1
|
Jakovljević D, Nikolić M, Jovanović V, Vidonja Uzelac T, Nikolić-Kokić A, Novaković E, Miljević Č, Milovanović M, Blagojević D. Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals (Basel) 2024; 17:130. [PMID: 38256963 PMCID: PMC10818330 DOI: 10.3390/ph17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease affecting millions of people worldwide, but little is known about the impact of anti-seizure medications on redox homeostasis. METHODS This study aimed to compare the effects of the long-term use of oral anti-seizure medications in monotherapy (lamotrigine, carbamazepine, and valproate) on antioxidant enzymes: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, haemoglobin, and methaemoglobin content in erythrocytes, and concentrations of total proteins and thiols, nitrites, lipid peroxides and total glutathione in the plasma of epilepsy patients and drug-naïve patients. RESULTS The results showed that lamotrigine therapy led to lower superoxide dismutase activity (p < 0.005) and lower concentrations of total thiols (p < 0.01) and lipid peroxides (p < 0.01) compared to controls. On the other hand, therapy with carbamazepine increased nitrite levels (p < 0.01) but reduced superoxide dismutase activity (p < 0.005). In the valproate group, only a decrease in catalase activity was observed (p < 0.005). Canonical discriminant analysis showed that the composition of antioxidant enzymes in erythrocytes was different for both the lamotrigine and carbamazepine groups, while the controls were separated from all others. CONCLUSIONS Monotherapy with anti-seizure medications discretely alters redox homeostasis, followed by distinct relationships between antioxidant components.
Collapse
Affiliation(s)
- Danijel Jakovljević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Milan Nikolić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Vesna Jovanović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Emilija Novaković
- Clinic for Mental Disorders “Dr. Laza Lazarević”, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Priština, 38220 Kosovska Mitrovica, Serbia
| | - Čedo Miljević
- Outpatient Department, Institute of Mental Health, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Maja Milovanović
- Department for Epilepsy and Clinical Neurophysiology, Institute of Mental Health, Faculty for Special Education and Rehabilitation, University of Belgrade, 11000 Belgrade, Serbia;
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| |
Collapse
|
2
|
Besedina NA, Skverchinskaya EA, Shmakov SV, Ivanov AS, Mindukshev IV, Bukatin AS. Persistent red blood cells retain their ability to move in microcapillaries under high levels of oxidative stress. Commun Biol 2022; 5:659. [PMID: 35787676 PMCID: PMC9253111 DOI: 10.1038/s42003-022-03620-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Oxidative stress is one of the key factors that leads to red blood cells (RBCs) aging, and impairs their biomechanics and oxygen delivery. It occurs during numerous pathological processes and causes anaemia, one of the most frequent side effects of cancer chemotherapy. Here, we used microfluidics to simulate the microcirculation of RBCs under oxidative stress induced by tert-Butyl hydroperoxide. Oxidative stress was expected to make RBCs more rigid, which would lead to decrease their transit velocity in microfluidic channels. However, single-cell tracking combined with cytological and AFM studies reveals cell heterogeneity, which increases with the level of oxidative stress. The data indicates that the built-in antioxidant defence system has a limit exceeding which haemoglobin oxidation, membrane, and cytoskeleton transformation occurs. It leads to cell swelling, increased stiffness and adhesion, resulting in a decrease in the transit velocity in microcapillaries. However, even at high levels of oxidative stress, there are persistent cells in the population with an undisturbed biophysical phenotype that retain the ability to move in microcapillaries. Developed microfluidic analysis can be used to determine RBCs' antioxidant capacity for the minimization of anaemia during cancer chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Alexander S Ivanov
- Peter the Great St.Petersburg Polytechnic University, Saint-Petersburg, Russia
| | - Igor V Mindukshev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the RAS, Saint-Petersburg, Russia
| | - Anton S Bukatin
- Department of Physics, Alferov University, Saint-Petersburg, Russia. .,Institute for Analytical Instrumentation of the RAS, Saint-Petersburg, Russia.
| |
Collapse
|
3
|
Silva-Filho R, Santos N, Santos MC, Nunes Á, Pinto R, Marinho C, Lima T, Fernandes MP, Santos JCC, Leite ACR. Impact of environmental mercury exposure on the blood cells oxidative status of fishermen living around Mundaú lagoon in Maceió - Alagoas (AL), Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112337. [PMID: 34029837 DOI: 10.1016/j.ecoenv.2021.112337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Mercury in the aquatic environment can lead to exposure of the human population and is a known toxic metal due to its capacity for accumulation in organs. We aimed to evaluate the mercury level in the blood and urine of fishermen and correlate it with the level of oxidative stress in blood cells. We show in this case-control study that the fishermen of the exposed group (case) of Mundaú Lagoon (Maceió - Alagoas, Brazil) have higher concentrations of total mercury in the blood (0.73-48.38 μg L-1) and urine (0.430-10.2 μg L-1) than the total mercury concentrations in blood (0.29-17.30 μg L-1) and urine (0.210-2.65 μg L-1) of the control group. In the blood cells of fishermen, we observed that the lymphomononuclear cells produced high levels of reactive oxygen species (61.7%), and the erythrocytes presented increased lipid peroxidation (151%) and protein oxidation (41.0%) and a decrease in total thiol (36.5%), GSH and the REDOX state (16.5%). The activity of antioxidant system enzymes (SOD, GPx, and GST) was also reduced in the exposed group by 26.9%, 28.3%, and 19.0%, respectively. Furthermore, hemoglobin oxygen uptake was decreased in the exposed group (40.0%), and the membrane of cells presented increased osmotic fragility (154%) compared to those in the control group. These results suggest that mercury in the blood of fishermen can be responsible for causing impairments in the oxidative status of blood cells and is probably the cause of the reduction in oxygen uptake capacity and damage to the membranes of erythrocytes.
Collapse
Affiliation(s)
- Reginaldo Silva-Filho
- Laboratory of Bioenergetics, Federal University of Alagoas, Maceió, Brazil; Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil
| | - Nerveson Santos
- Laboratory of Bioenergetics, Federal University of Alagoas, Maceió, Brazil
| | - Mayara Costa Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil
| | - Ábner Nunes
- Research Group of Catalysis and Chemical Reactivity, Federal University of Alagoas, Maceió-AL, Brazil
| | | | | | - Talitta Lima
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Victory, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Mariana P Fernandes
- Laboratory of Biochemistry and Exercise Biochemistry, Academic Center of Victory, Federal University of Pernambuco, Vitória de Santo Antão, Brazil
| | - Josué Carinhanha C Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Federal University of Alagoas, Maceió, Brazil.
| | | |
Collapse
|
4
|
Bogdanović Pristov J, Opačić M, Bajčetić M, Mandić V, Maglić D, Miković Ž, Spasojević I. Oxidative status of maternal blood in pregnancies burdened by inherited thrombophilias. PLoS One 2020; 15:e0234253. [PMID: 32555583 PMCID: PMC7299371 DOI: 10.1371/journal.pone.0234253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Oxidative status of maternal blood represents an important parameter of pregnancy that is involved in both, regulation of physiological processes and (if significantly altered) development of different pregnancy complications. Inherited thrombophilias represent genetic disorders that increase the risk of thromboembolism in pregnancy. Little is known about the impact of thrombophilia on the oxidative status of maternal blood. In this study, we analyzed oxidative status of blood of 56 women with pregnancies burdened by inherited thrombophilias. The status was established at three different trimesters using biochemical assays and electrochemical measurements, and it was compared to 10 age- and trimester-matching controls. Activities of superoxide dismutase, catalase, and glutathione reductase in the 1st and the 2nd trimester of thrombophilic pregnancy were lower than controls. Also, there was less oxidation in the plasma, according to higher concentration of reduced thiols and lower oxidation-reduction potential. Therefore, it appears that thrombophilic mothers do not experience oxidative stress in the circulation in the first two trimesters. However, the rise in GPx, GR and SOD activities in the 3rd trimester of thrombophilic pregnancy implies that the risk of oxidative stress is increased during the late pregnancy. These results are important for developing antioxidative treatment that could tackle thrombophilia-related pregnancy complications.
Collapse
Affiliation(s)
- Jelena Bogdanović Pristov
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Miloš Opačić
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia.,Clinical Pharmacology Unit, University Children's Hospital, Belgrade, Serbia
| | - Vesna Mandić
- Department for High-risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni front", Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Maglić
- Department for High-risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni front", Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- Department for High-risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni front", Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Spasojević
- Life Sciences Department, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Janse van Rensburg M, van Rooy MJ, Bester MJ, Oberholzer HM. Ultrastructural alterations of whole blood by copper, manganese and mercury metal mixtures using a chronic in vivo model of coagulation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 75:103314. [PMID: 31881365 DOI: 10.1016/j.etap.2019.103314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/18/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Globally, contamination of drinking water by heavy metals is increasing and poses a potential hazard to human health. Data on heavy metal mixtures and their effects on thrombosis are limited. The objective of this study was to determine the in vivo effects that copper, manganese and mercury, alone and in mixtures, have on clotting potential. Forty-eight male Sprague-Dawley rats were divided into eight groups, dependent on the type of heavy metal/s administered. The dosages were calculated at X100 the World Health Organisation limits in drinking water and orally administered for 28 days, at the University of Pretoria in 2018. Heavy metal induced morphological alterations of erythrocytes, platelets and fibrin networks were evaluated, using scanning electron microscopy. The manganese and mercury mixture had the greatest thrombotic potential by inducing acanthocyte and echinocyte formation, generating highly activated platelets with spontaneous fibrin formation and forming a disorganised fibrin network. In conclusion, chronic or single high dosage exposure to these heavy metals can potentially induce or contribute to thrombosis.
Collapse
Affiliation(s)
- Maxine Janse van Rensburg
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa.
| | - Mia-Jeanne van Rooy
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa.
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa.
| | - Hester Magdalena Oberholzer
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa.
| |
Collapse
|
6
|
Kolyada MN, Osipova VP, Berberova NT, Shpakovsky DB, Milaeva ER. Antioxidant Activity of 2,6-Di-tert-butylphenol Derivatives in Lipid Peroxidation and Hydrogen Peroxide Decomposition by Human Erythrocytes in vitro. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363218120095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Revin VV, Gromova NV, Revina ES, Samonova AY, Tychkov AY, Bochkareva SS, Moskovkin AA, Kuzmenko TP. The Influence of Oxidative Stress and Natural Antioxidants on Morphometric Parameters of Red Blood Cells, the Hemoglobin Oxygen Binding Capacity, and the Activity of Antioxidant Enzymes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2109269. [PMID: 30792991 PMCID: PMC6354144 DOI: 10.1155/2019/2109269] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/15/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Using a wide range of different physical and chemical methods, it was found that the oxidative stress caused by addition of hydrogen peroxide to the incubation medium has a significant effect on the conformation of haematoporphyrin, influencing the oxygen-binding properties of haemoglobin in red blood cells. Morphofunctional characteristics of red blood cells change; in particular, we have observed the transformation of erythrocytes, their transition into echinocytes. In erythrocytes, in response to increased lipid peroxidation (LPO) antioxidant enzymes become active. The use of natural antioxidants (β-carotene and resveratrol) works towards reducting the level of oxidative processes. Resveratrol has the greatest antioxidant effect.
Collapse
Affiliation(s)
- Victor V. Revin
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Natalia V. Gromova
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Elvira S. Revina
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Anastasia Yu. Samonova
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Alexander Yu. Tychkov
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Svetlana S. Bochkareva
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Alexander A. Moskovkin
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| | - Tatyana P. Kuzmenko
- Federal State-Financed Academic Institution of Higher Education “National Research Ogarev Mordovia State University”, Saransk 430005, Russia
| |
Collapse
|
8
|
Čolak E, Ignjatović S, Radosavljević A, Žorić L. The association of enzymatic and non-enzymatic antioxidant defense parameters with inflammatory markers in patients with exudative form of age-related macular degeneration. J Clin Biochem Nutr 2017; 60:100-107. [PMID: 28366988 PMCID: PMC5371514 DOI: 10.3164/jcbn.16-30] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/26/2016] [Indexed: 02/05/2023] Open
Abstract
There are evidence that oxidative stress and inflammation are involved in the pathogenesis of the age-related macular degeneration (AMD). The aim of this study was to analyze the antioxidant defense parameters and inflammatory markers in patients with exudative form of AMD (eAMD), their mutual correlations and association with the specific forms of AMD. The cross-sectional study, included 75 patients with the eAMD, 31 patients with the early form, and 87 aged-matched control subjects. Significantly lower SOD, TAS and albumin values and higher GR, CRP and IL-6 were found in the eAMD compared to the early form (p<0.05). Significant negative correlations were found between GPx and fibrinogen (r = -0.254), TAS and IL-6 (r = -0.999) and positive correlations between uric acid and CRP (r = 0.292), IL-6 and uric acid (r = 0.398) in the eAMD. A significant association of CRP (OR: 1.16, 95% CI: 1.03-1.32, p = 0.018), fibrinogen (OR: 2.21, 95% CI: 1.14-4.85, p = 0.021), TAS (OR: 7.45, 95% CI: 3.97-14.35, p = 0.0001), albumin (OR: 1.25, 95% CI: 1.11-1.41, p = 0.0001) and uric acid (OR: 1.006, 95% CI: 1.00-1.02, p = 0.003) was found with the eAMD. In conclusion it may be suggested, there is a significant impairment of antioxidant and inflammatory parameter levels in eAMD patients. In addition, significant association exists between the tested inflammatory markers and antioxidant parameters with late-eAMD.
Collapse
Affiliation(s)
- Emina Čolak
- Institute of Medical Biochemistry, Clinical Center of Serbia, School of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| | - Svetlana Ignjatović
- Institute of Medical Biochemistry, Clinical Center of Serbia, School of Pharmacy, University of Belgrade, Belgrade 11000, Serbia
| | - Aleksandra Radosavljević
- Institute of Ophthalmology, Medical Retina Department, Clinical Center of Serbia, School of Medicine, University of Belgrade, Belgrade 11000, Serbia
| | - Lepša Žorić
- Clinic for Eye Diseases, Clinical Center, Faculty of Medicine, Settlement Kosovska Mitrovica, Kosovska Mitrovica 38200, Serbia
| |
Collapse
|
9
|
Radakovic M, Davitkov D, Borozan S, Stojanovic S, Stevanovic J, Krstic V, Stanimirovic Z. Oxidative stress and DNA damage in horses naturally infected with Theileria equi. Vet J 2016; 217:112-118. [DOI: 10.1016/j.tvjl.2016.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
|
10
|
Rocha S, Gomes D, Lima M, Bronze-da-Rocha E, Santos-Silva A. Peroxiredoxin 2, glutathione peroxidase, and catalase in the cytosol and membrane of erythrocytes under H2O2-induced oxidative stress. Free Radic Res 2015; 49:990-1003. [PMID: 25786472 DOI: 10.3109/10715762.2015.1028402] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Erythrocytes are continuously exposed to risk of oxidative injury due to oxidant oxygen species. To prevent damage, they have antioxidant agents namely, catalase (Cat), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2). Our aim was to contribute to a better understanding of the interplay between Prx2, Cat, and GPx under H2O2-induced oxidative stress, by studying their changes in the red blood cell cytosol and membrane, in different conditions. These three enzymes were quantified by immunoblotting. Malondialdehyde, that is, lipoperoxidation (LPO) in the erythrocyte membrane, and membrane-bound hemoglobin (MBH) were evaluated, as markers of oxidative stress. We also studied the erythrocyte membrane protein profile, to estimate how oxidative stress affects the membrane protein structure. We showed that under increasing H2O2 concentrations, inhibition of the three enzymes with or without metHb formation lead to the binding of Prx2 and GPx (but not Cat) to the erythrocyte membrane. Prx2 was detected mainly in its oxidized form and the linkage of metHb to the membrane seems to compete with the binding of Prx2. Catalase played a major role in protecting erythrocytes from high exogenous flux of H2O2, since whenever Cat was active there were no significant changes in any of the studied parameters. When only Cat was inhibited, Prx2 and GPx were unable to prevent H2O2-induced oxidative stress resulting in increasing MBH and membrane LPO. Additionally, the inhibition of one or more of these enzymes induced changes in the anchor/linker proteins of the junctional complexes of the membrane cytoskeleton-lipid bilayer, which might lead to membrane destabilization.
Collapse
Affiliation(s)
- S Rocha
- UCIBIO, REQUIMTE, Biochemistry Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| | | | | | | | | |
Collapse
|
11
|
Nikolić-Kokić A, Oreščanin-Dušić Z, Spasojević I, Slavić M, Mijušković A, Paškulin R, Miljević Č, Spasić MB, Blagojević DP. Ex vivo effects of ibogaine on the activity of antioxidative enzymes in human erythrocytes. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:64-70. [PMID: 25660330 DOI: 10.1016/j.jep.2015.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/13/2015] [Accepted: 01/27/2015] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. AIM OF THE STUDY Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. MATERIALS AND METHODS Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. RESULTS Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. CONCLUSION Some of the effects of ibogaine seem to be mediated through its influence on energy metabolism, redox active processes and the effects of discrete fluctuations of individual reactive oxygen species on different levels of enzyme activities. Overall, ibogaine acts as a pro-antioxidant by increasing activity of antioxidative enzymes and as an adaptagene in oxidative distress.
Collapse
Affiliation(s)
- Aleksandra Nikolić-Kokić
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Zorana Oreščanin-Dušić
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Marija Slavić
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Ana Mijušković
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Roman Paškulin
- OMI Institute, Trnovska 8, Ljubljana, Slovenia; Institute of Pathophysiology, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Čedo Miljević
- Institute of Mental Health, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Mihajlo B Spasić
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| | - Duško P Blagojević
- Institute for biological research "Siniša Stanković", University of Belgrade, Despota Stefana 142, Belgrade, Serbia
| |
Collapse
|
12
|
Bogosavljević V, Bajčetić M, Spasojević I. Comparative analysis of antioxidative systems in malignant and benign brain tumours. Redox Rep 2014; 20:69-74. [PMID: 25247681 DOI: 10.1179/1351000214y.0000000106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Comparison of redox conditions in malignant and benign tumours is essential for understanding the role of reactive oxygen species in the pathophysiology of aggressive cancer profiles. Here we compare antioxidative systems in highly malignant brain tumour - glioblastoma multiforme (GBM), and in meningioma, a benign brain tumour. METHODS Tumour tissues and blood of 67 GBM patients (mean age: 52.9 ± 11.5 years) and 67 meningioma patients (59.2 ± 10.2 years), and blood of 30 control subjects (50.8 ± 12.8 years) were analysed via biochemical assays. RESULTS Components of glutathione system, which is responsible for H2O2 removal, showed lower activity/level in GBM: glutathione peroxidase (GBM: 9.90 ± 0.22; meningioma: 11.78 ± 0.23 U/mg of proteins; P < 0.001), glutathione reductase (GBM: 3.83 ± 0.13; meningioma: 4.67 ± 0.11 U/mg of proteins; P < 0.001), and glutathione (GBM: 6.70 ± 0.12; meningioma: 7.58 ± 0.14 μmol/g of tissue; P < 0.001). In contrast, the rank order of glutathione reductase activity and glutathione level in erythrocytes was: GBM > meningioma > control. Superoxide dismutase and catalase activities were lower in the blood of cancer patients compared to controls. DISCUSSION Cells of malignant brain tumour show down-regulated antioxidative system which might result in increased levels of H2O2 compared to benign tumour tissue.
Collapse
|
13
|
Jamialahmadi K, Arasteh O, Matbou Riahi M, Mehri S, Riahi-Zanjani B, Karimi G. Protective effects of glucosamine hydrochloride against free radical-induced erythrocytes damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:212-219. [PMID: 24959958 DOI: 10.1016/j.etap.2014.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/26/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
Glucosamine (GlcN) is an important precursor in the biochemical synthesis of glycosylated proteins and lipids in human body. It gains importance because of its contribution to human health and its multiple biological and therapeutic effects. In this study, the in vitro oxidative hemolysis of rat erythrocyte was used as a model to study the potential protective effect of glucosamine hydrochloride against free radical-induced damage of biological membranes. Glucosamine hydrochloride exhibited dose-dependent DPPH antioxidant activity. Oxidative hemolysis and lipid/protein peroxidation of erythrocytes induced by a water-soluble free radical initiator 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) were significantly suppressed by GlcN in a time and dose dependent manner. GlcN also prevented the depletion of cytosolic antioxidant glutathione (GSH) in erythrocytes. These results indicated that glucosamine hydrochloride efficiently protected erythrocytes against free radicals and it could be recommended as a pharmaceutical supplement to alleviate oxidative stress.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Arasteh
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Matbou Riahi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Medical Toxicology Research Center and Pharmacy School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Bajčetić M, Otašević B, Prekajski NB, Spasić S, Spasojević I. Antioxidative system in the erythrocytes of preterm neonates with sepsis: the effects of vitamin E supplementation. Ann Clin Biochem 2013; 51:550-6. [PMID: 24081186 DOI: 10.1177/0004563213503317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vitamin E is routinely supplemented to preterm babies, including those with neonatal sepsis. Our aim was to examine the effects of neonatal sepsis and vitamin E on antioxidative system (AOS) in the blood. METHODS A prospective, randomized, open label study involved 65 preterm neonates (control/sepsis - 34/31), which were divided into two subgroups - non-supplemented and supplemented with vitamin E (25 IU/day for 60 days). The activities of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined in erythrocytes at days 0, 30, and 60, following sepsis diagnosis. RESULTS There was no difference in the activity of AOS between controls and neonates with ongoing sepsis. At 60 days, septic neonates showed higher CAT activity compared to controls (P = 0.027), and lower GPx activity compared to 0 days (P = 0.022). The later was mitigated by vitamin E, which on the other hand provoked lower GPx activity at 30 days, compared to untreated septic neonates (P = 0.014). In addition, vitamin E suppressed GR activity in septic neonates (P = 0.025 and P = 0.017 at 30 and 60 days). Finally, vitamin E supplementation in control neonates provoked a significant increase of GPx activity (P = 0.015 at 60 days). CONCLUSIONS The absence of altered redox settings in the blood of neonates during sepsis episode, and vitamin E-provoked decrease in the activity of some components of AOS, suggest that the supplementation of vitamin E in these patients might not be rational.
Collapse
Affiliation(s)
- Milica Bajčetić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Serbia Clinical Pharmacology Unit, University Children's Hospital, Belgrade, Serbia
| | | | | | - Snežana Spasić
- Department of Chemistry, IChTM, University of Belgrade, Serbia
| | - Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Unfer TC, Maurer LH, Kemerich DM, Figueiredo CG, Duarte MMF, Gelain DP, Moreira JCF, Emanuelli T. Non-genomic, direct modulatory effect of 17β-estradiol, progesterone and their synthetic derivatives on the activity of human erythrocyte CuZn superoxide dismutase. Free Radic Res 2013; 47:219-32. [DOI: 10.3109/10715762.2012.762770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Miljević Č, Nikolić-Kokić A, Nikolić M, Niketić V, Spasić MB, Lečić-Toševski D, Blagojević D. Effect of atypical antipsychotics on antioxidant enzyme activities in human erythrocytes (in vitro study). Hum Psychopharmacol 2013; 28:1-6. [PMID: 23124725 DOI: 10.1002/hup.2272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/19/2012] [Accepted: 09/30/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This study was set out to examine the impact of atypical antipsychotic drugs: aripiprazole, clozapine, ziprasidone, olanzapine, quetiapine, sertindole and amisulpride on the activity of antioxidant defence enzymes in human erythrocytes in vitro. METHODS Cu,Zn-superoxide dismutase (SOD1), catalase (CAT), selenium-dependent glutathione peroxidase and glutathione reductase activities were determined after drugs incubation with blood of 15 apparently healthy non-smoking male volunteers (ages 23-39) for 1 h at 37 °C. RESULTS A statistically significant increase in SOD1 activity was found in samples incubated with aripiprazole (p < 0.01) and quetiapine (p < 0.05) compared with incubated control. SOD1 activity profile following native polyacrylamide gel electrophoresis indicates that aripiprazole and quetiapine protect enzyme activity from inhibition with hydrogen peroxide. Our results showed that sertindole decreases activity of CAT comparing with control non-treated erythrocytes. Moreover, in sertindole treated erythrocytes, negative correlation between SOD1 and glutathione peroxidase activities was found. Increased amount of hydrogen peroxide in such situation may leave erythrocytes and transform their role in circulation from anti-oxidative to pro-oxidative. CONCLUSIONS Our results indicate that mechanism through sertindole could express its in vivo toxic effects and point toward possible (neuro)protective effects of aripiprazole and quetiapine.
Collapse
Affiliation(s)
- Čedo Miljević
- Institute of Mental Health, School of Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
17
|
Pristov JB, Maglić D, Opačić M, Mandić V, Miković Ž, Spasić M, Spasojević I. Ante- and postpartum redox status of blood in women with inherited thrombophilia treated with heparin. Thromb Res 2012; 130:826-9. [DOI: 10.1016/j.thromres.2012.08.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/13/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
18
|
The Impact of Senile Cataract Maturity on Blood Oxidative Stress Markers and Glutathione-Dependent Antioxidants: Relations with Lens Variables. J Med Biochem 2012. [DOI: 10.2478/v10011-012-0003-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Impact of Senile Cataract Maturity on Blood Oxidative Stress Markers and Glutathione-Dependent Antioxidants: Relations with Lens VariablesOxidative stress is implicated in senile cataract (SC) genesis, although the impact of SC maturity on blood oxidative stress markers is unclear. Total hydroperoxides, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) were measured in the blood and lens samples of patients having either immature (n=31) or mature SC (n=50), and in 22 blood samples from noncataract controls. Compared to controls, SC patients had higher plasma MDA and serum GST, and decreased plasma GR and GSH levels. Plasma GPx as well as hydroperoxides differed from control values only in patients with mature SC. The multivariate logistic regression analysis showed that the fall of plasma GR activity (OR 5.14; CI 1.82-14.51;p=0.0020), as well as serum GST activity (OR 3.84; CI 1.36-10.83;p=0.0108) were independently associated with the maturity of SC. Lens hydroperoxides, MDA and GST, showed no correlation with correspondent blood values, in contrast to GPx (r=0.715; p<0.001) and GR (r=0.703; p<0.001). This study showed that the severity of SC is associated with increased systemic oxidative stress, which could be due to the fall of GSH-dependent antioxidant enzymes activities.
Collapse
|
19
|
Mendanha SA, Anjos JLV, Silva AHM, Alonso A. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide. Braz J Med Biol Res 2012; 45:473-81. [PMID: 22473321 PMCID: PMC3854297 DOI: 10.1590/s0100-879x2012007500050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/26/2012] [Indexed: 11/21/2022] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H(2)O(2)). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H(2)O(2) (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H(2)O(2) (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Collapse
Affiliation(s)
- S A Mendanha
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil
| | | | | | | |
Collapse
|
20
|
Abstract
Age-Related Blood Antioxidant Capacity in Men and WomenThe aim of the study was to assess the blood antioxidant capacity in men and women in relation to age. The subjects were 19 men (YM) and 19 women (YW) aged 25-32 years, and 11 men (OM) and 11 women (OW) aged 63-71 years, all sedentary. The following factors were determined: the activity of erythrocyte superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), total antioxidant status (TAS), as well as plasma retinol, α-tocopherol, uric acid and total protein concentrations. The sum of standardized activities of antioxidant enzymes was calculated to compare age-related changes in the total capacity of the erythrocyte antioxidant defense. No significant age-related changes in SOD activity were observed; mean CAT activity was higher in older women and men than in younger subjects. Mean activity of GPX was higher and that of GR lower in older subjects compared to the younger ones. The calculated total erythrocyte antioxidant enzyme capacity in younger and older subjects rendered similar values. No significant differences in plasma retinol and α-tocopherol concentrations in relation to sex or age were noted. The plasma total protein level was significantly lower in younger women and men compared to their older mates. It was concluded that the total erythrocyte enzymatic antioxidant capacity did not change with age. The results obtained clearly show that multiple factors may contribute to the ageing process.
Collapse
|
21
|
The Effects of Hyperthyroidism on Lipid Peroxidation, Erythrocyte Glutathione and Glutathione Peroxidase. J Med Biochem 2011. [DOI: 10.2478/v10011-010-0048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Effects of Hyperthyroidism on Lipid Peroxidation, Erythrocyte Glutathione and Glutathione PeroxidaseThe aim of this study was to determine if lipid peroxidation, glutathione, and glutathione peroxidase levels can be effected by hyperthyroidism. Twenty-three subjects with hyperthyroidism (18 females/5 males), and 19 euthyroid subjects (11 females/8 males) were examined in this study. Plasma and erythrocytes malondialdehyde (MDA), erythrocytes glutathione (GSH) and glutathione peroxidase (GSH-PX) were measured. Results show that an increase in lipid peroxidation was observed in the hyperthyroid patients (p < 0.001). This was accompanied by a decrease in glutathione and glutathione peroxidase in the same subjects (p < 0.001). The results suggest that hyperthyroidism has some effects on lipid peroxidation and free radical scavengers.
Collapse
|
22
|
Abstract
Diagnostic and Therapeutic Significance of the Oxidative Stress Parameters in ChildrenPharmacotherapy of pediatric diseases represents a major challenge considering that the majority of medicines in everyday practice have not been pediatrically evaluated. The efficacy of therapy depends to a large extent on the knowledge of pathophysiological processes in the children organism at different ages. Therefore, research in that direction is of the utmost importance. An imbalance in the production of free oxygen/nitrogen species and parameters of antioxidative protection is a significant factor in many diseases (e.g. heart failure, pulmonary hypertension, asthma, neonatal sepsis, cancer etc.) in children of different age groups. Reactive oxygen/nitrogen species serve as cell signaling molecules for normal biologic processes. An increase in their generation can cause damages which can disrupt normal physiological cellular processes and eventually cause cell death. This review outlines the previous assessments of oxidative stress parameters in children of different ages for some diseases. Also, the potential diagnostic and therapeutic possibilities for the oxydative stress parameters in children have been considered.
Collapse
|
23
|
Electron Paramagnetic Resonance - A Powerful Tool of Medical Biochemistry in Discovering Mechanisms of Disease and Treatment Prospects. J Med Biochem 2010. [DOI: 10.2478/v10011-010-0020-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Electron Paramagnetic Resonance - A Powerful Tool of Medical Biochemistry in Discovering Mechanisms of Disease and Treatment ProspectsIn pathophysiological conditions related to oxidative stress, the application of selected antioxidants could have beneficial effects on human health. Electron paramagnetic resonance (EPR) spectroscopy is a technique that provides unique insight into the redox biochemistry, due to its ability to: (i) distinguish and quantify different reactive species, such as hydroxyl radical, superoxide, carbon centered radicals, hydrogen atom, nitric oxide, ascorbyl radical, melanin, and others; (ii) evaluate the antioxidative capacity of various compounds, extracts and foods; (iii) provide information on other important parameters of biological systems. A combination of EPR spectroscopy and traditional biochemical methods represents an efficient tool in the studies of disease mechanisms and antioxidative therapy prospects, providing a more complete view into the redox processes in the human organism.
Collapse
|