Esmaeili N, Illanes A, Boese A, Davaris N, Arens C, Friebe M. Novel automated vessel pattern characterization of larynx contact endoscopic video images.
Int J Comput Assist Radiol Surg 2019;
14:1751-1761. [PMID:
31352673 PMCID:
PMC6797664 DOI:
10.1007/s11548-019-02034-9]
[Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/18/2019] [Indexed: 11/25/2022]
Abstract
Purpose
Contact endoscopy (CE) is a minimally invasive procedure providing real-time information about the cellular and vascular structure of the superficial layer of laryngeal mucosa. This method can be combined with optical enhancement methods such as narrow band imaging (NBI). However, these techniques have some problems like subjective interpretation of vascular patterns and difficulty in differentiation between benign and malignant lesions. We propose a novel automated approach for vessel pattern characterization of larynx CE + NBI images in order to solve these problems.
Methods
In this approach, five indicators were computed to characterize the level of vessel’s disorder based on evaluation of consistency of gradient and two-dimensional curvature analysis and then 24 features were extracted from these indicators. The method evaluated the ability of the extracted features to classify CE + NBI images based on the vascular pattern and based on the laryngeal lesions. Four datasets were generated from 32 patients involving 1485 images. The classification scenarios were implemented using four supervised classifiers.
Results
For classification of CE + NBI images based on the vascular pattern, polykernel support vector machine (SVM), SVM with radial basis function (RBF), k-nearest neighbor (kNN), and random forest (RF) show an accuracy of 97%, 96%, 96%, and 96%, respectively. For the classification based on the histopathology, Polykernel SVM showed an accuracy of 84%, 86% and 84%, RBF SVM showed an accuracy of 81%, 87% and 83%, kNN showed an accuracy of 89%, 87%, 91%, RF showed an accuracy of 90%, 88% and 91% for classification between benign histopathologies, between malignant histopathologies and between benign and malignant lesions, respectively.
Conclusion
These promising results show that the proposed method could solve the problem of subjectivity in interpretation of vascular patterns and also support the clinicians in the early detection of benign, pre-malignant and malignant lesions.
Collapse