1
|
Liu T, Zhang Y, Nie H, Sun J, Yan X. Characterization and expression patterns of the Fox gene family under heat and cold stress in Manila clam Ruditapes philippinarum based on genome-wide identification. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101313. [PMID: 39216278 DOI: 10.1016/j.cbd.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, the Fox gene family of Ruditapes philippinarum was identified by bioinformatics analysis and genome data. The results showed that a total of 21 Fox genes were identified in R. philippinarum, which were divided into 16 subfamilies, including two members of Foxa subfamily (Foxa1, Foxa2), three members of Foxl subfamily (Foxl1b, Foxl1a, FOXL2), three members of Foxn subfamily (FOXN3, FOX4A, Foxn4b) and one member of other families. The chromosome distribution, domains, conserved motifs, introns, exons and protein tertiary structures of these 21 Fox genes were predicted. By analyzing the RNA-seq data of R. philippinarum, it was found that the Fox gene family was differentially expressed in different tissues, different developmental stages and under heat and cold stress. Most of Fox genes were highly expressed in four tissues: labial palp, gonad, gill and foot. Most of the Fox genes were highly expressed in blastula stage. Most of the Fox genes were highly expressed in high temperature group of two populations, and Foxo, FOXG1 were highly expressed in low temperature group. In addition, qPCR showed that the expression levels of Foxo and Foxj1b genes increased significantly under acute cold stress. Therefore, we speculate that Fox genes may play important roles in embryo development and the temperature stress of R. philippinarum, and this study provides a basis for further exploring the molecular mechanism of low temperature tolerance mediated by Fox.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yue Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Jingxian Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Fangma Y, Wan H, Shao C, Jin L, He Y. Research Progress on the Role of Sirtuin 1 in Cerebral Ischemia. Cell Mol Neurobiol 2022:10.1007/s10571-022-01288-3. [DOI: 10.1007/s10571-022-01288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
|
3
|
Chun KS, Kim DH, Surh YJ. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance. Cells 2021; 10:cells10040758. [PMID: 33808242 PMCID: PMC8065762 DOI: 10.3390/cells10040758] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Korea;
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| |
Collapse
|
4
|
Zhang H, Lin F, Zhao J, Wang Z. Expression Regulation and Physiological Role of Transcription Factor FOXO3a During Ovarian Follicular Development. Front Physiol 2020; 11:595086. [PMID: 33250784 PMCID: PMC7674958 DOI: 10.3389/fphys.2020.595086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, developing ovarian follicles transform from primordial follicles to primary follicles, secondary follicles, and mature follicles, accompanied by changes in follicular secretory functions. FoxO3a is a member of the forkhead transcription factor family (FoxO), which plays an important role in the cell cycle, DNA damage repair, apoptosis, oxidative stress, and energy metabolism. Recent studies have shown that FOXO3a is involved in the physiological regulation of follicular development and pathological progression of related ovarian diseases, which will provide useful concepts and strategies for retarding ovarian aging, prolonging the ovarian life span, and treating ovarian diseases. Therefore, the regulation of FOXO3a expression, as well as the physiological contribution during ovarian follicular development are detailed in this paper, presenting an important reference for the further study of ovarian biology.
Collapse
Affiliation(s)
- Hong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fengping Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiuhua Zhao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,West Anhui Health Vocational College, Lu'an, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
FoxO transcription factors 1 regulate mouse preimplantation embryo development. J Assist Reprod Genet 2019; 36:2121-2133. [PMID: 31396850 DOI: 10.1007/s10815-019-01555-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of the present study is to investigate role of FoxO transcription factors in preimplantation embryo development by knocking down FoxO1, FoxO3, and FoxO4 genes and also to assess cell cycle arrest related proteins, p53 and p21, and apoptosis-related proteins, fas ligand (FASL), and cleaved caspase 3. METHODS Knockdown of FoxOs using siRNA was confirmed utilizing RT-PCR and qRT-PCR in gene level and using immunofluorescence in protein level. Following knockdown of FoxO1, FoxO3, and FoxO4 in two-cell mouse embryos with or without resveratrol treatment; developmental competence of embryos and expression patterns of SIRT1, p53, p21, FASL, and CLEAVED CASPASE 3 proteins in embryos by immunofluorescence were assessed after 48 h. ROS levels were measured in knockdown embryos. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to determine resveratrol dose. RESULTS Successful knockdown of FoxO genes in mouse embryos utilizing a non-invasive siRNA method was achieved. Significantly, knockdown of FoxO genes impaired preimplantation embryo development which cannot be prevented by resveratrol treatment. Immunofluorescence results showed that resveratrol could protect embryos from cell cycle arrest and apoptosis. FOXO proteins regulate apoptosis and cell cycle related proteins in mouse preimplantation embryos. Moreover, there might be an autofeedback mechanism where FOXO1, FOXO3, and FOXO4 regulate SIRT1 protein expression. CONCLUSIONS These results suggest that FOXO transcription factors could contribute to mouse preimplantation embryo development, and it remains to investigate whether they have crucial roles in human preimplantation embryo and infertility.
Collapse
|
6
|
Liu X, Cai S, Zhang C, Liu Z, Luo J, Xing B, Du X. Deacetylation of NAT10 by Sirt1 promotes the transition from rRNA biogenesis to autophagy upon energy stress. Nucleic Acids Res 2019; 46:9601-9616. [PMID: 30165671 PMCID: PMC6182161 DOI: 10.1093/nar/gky777] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023] Open
Abstract
Anabolism and catabolism are tightly regulated according to the cellular energy supply. Upon energy stress, ribosomal RNA (rRNA) biogenesis is inhibited, and autophagy is induced. However, the mechanism linking rRNA biogenesis and autophagy is unclear. Here, we demonstrate that the nucleolar protein NAT10 plays a role in the transition between rRNA biogenesis and autophagy. Under normal conditions, NAT10 is acetylated to activate rRNA biogenesis and inhibit autophagy induction. Mechanistic studies demonstrate that NAT10 binds to and acetylates the autophagy regulator Che-1 at K228 to suppress the Che-1-mediated transcriptional activation of downstream genes Redd1 and Deptor under adequate energy supply conditions. Upon energy stress, NAT10 is deacetylated by Sirt1, leading to suppression of NAT10-activated rRNA biogenesis. In addition, deacetylation of NAT10 abolishes the NAT10-mediated transcriptional repression of Che-1, leading to the release of autophagy inhibition. Collectively, we demonstrate that the acetylation status of NAT10 is important for the anabolism-catabolism transition in response to energy stress, providing a novel mechanism by which nucleolar proteins control rRNA synthesis and autophagy in response to the cellular energy supply.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Shiying Cai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chunfeng Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Liu
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianyuan Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Baocai Xing
- Hepatopancreatobiliary Surgery Department I, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojuan Du
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
7
|
Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018. [PMID: 30487470 DOI: 10.3390/ijms19123794.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
|
8
|
Wang R, Zhang S, Previn R, Chen D, Jin Y, Zhou G. Role of Forkhead Box O Transcription Factors in Oxidative Stress-Induced Chondrocyte Dysfunction: Possible Therapeutic Target for Osteoarthritis? Int J Mol Sci 2018; 19:ijms19123794. [PMID: 30487470 PMCID: PMC6321605 DOI: 10.3390/ijms19123794] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/24/2018] [Indexed: 12/11/2022] Open
Abstract
Chondrocyte dysfunction occurs during the development of osteoarthritis (OA), typically resulting from a deleterious increase in oxidative stress. Accordingly, strategies for arresting oxidative stress-induced chondrocyte dysfunction may lead to new potential therapeutic targets for OA treatment. Forkhead box O (FoxO) transcription factors have recently been shown to play a protective role in chondrocyte dysfunction through the regulation of inflammation, autophagy, aging, and oxidative stress. They also regulate growth, maturation, and matrix synthesis in chondrocytes. In this review, we discuss the recent progress made in the field of oxidative stress-induced chondrocyte dysfunction. We also discuss the protective role of FoxO transcription factors as potential molecular targets for the treatment of OA. Understanding the function of FoxO transcription factors in the OA pathology may provide new insights that will facilitate the development of next-generation therapies to prevent OA development and to slow OA progression.
Collapse
Affiliation(s)
- Rikang Wang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Shuai Zhang
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Rahul Previn
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Guangqian Zhou
- Shenzhen Key Laboratory for Anti-ageing and Regenerative Medicine, Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Medical Cell Biology and Genetics, Shenzhen University Health Science Center, Shenzhen 518060, China.
| |
Collapse
|
9
|
Wang LC, Wei WH, Zhang XW, Liu D, Zeng KW, Tu PF. An Integrated Proteomics and Bioinformatics Approach Reveals the Anti-inflammatory Mechanism of Carnosic Acid. Front Pharmacol 2018; 9:370. [PMID: 29713284 PMCID: PMC5911474 DOI: 10.3389/fphar.2018.00370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/29/2018] [Indexed: 12/18/2022] Open
Abstract
Drastic macrophages activation triggered by exogenous infection or endogenous stresses is thought to be implicated in the pathogenesis of various inflammatory diseases. Carnosic acid (CA), a natural phenolic diterpene extracted from Salvia officinalis plant, has been reported to possess anti-inflammatory activity. However, its role in macrophages activation as well as potential molecular mechanism is largely unexplored. In the current study, we sought to elucidate the anti-inflammatory property of CA using an integrated approach based on unbiased proteomics and bioinformatics analysis. CA significantly inhibited the robust increase of nitric oxide and TNF-α, downregulated COX2 protein expression, and lowered the transcriptional level of inflammatory genes including Nos2, Tnfα, Cox2, and Mcp1 in LPS-stimulated RAW264.7 cells, a murine model of peritoneal macrophage cell line. The LC-MS/MS-based shotgun proteomics analysis showed CA negatively regulated 217 LPS-elicited proteins which were involved in multiple inflammatory processes including MAPK, nuclear factor (NF)-κB, and FoxO signaling pathways. A further molecular biology analysis revealed that CA effectually inactivated IKKβ/IκB-α/NF-κB, ERK/JNK/p38 MAPKs, and FoxO1/3 signaling pathways. Collectively, our findings demonstrated the role of CA in regulating inflammation response and provide some insights into the proteomics-guided pharmacological mechanism study of natural products.
Collapse
Affiliation(s)
- Li-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wen-Hui Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xiao-Wen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Liu
- Proteomics Laboratory, Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Yang L, Duan Z, Liu X, Yuan Y. N-acetyl-l-cysteine ameliorates the PM 2.5-induced oxidative stress by regulating SIRT-1 in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:70-75. [PMID: 29223039 DOI: 10.1016/j.etap.2017.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Silent information regulator 1 (SIRT1), a class III histone deacetylase, plays a major role in combating cellular oxidative stress injury. However, the role of SIRT1 in oxidative stress induced by particulate matter remains unclear. A total of 32 healthy male Sprague-Dawley rats were divided into PM2.5, PM2.5+NAC, filtered air (control), and filtered air+NAC (NAC control) groups. The expressions of MnSOD, SIRT1, and FOXO3a were examined at both transcriptional and protein levels. The expression levels of MnSOD, SIRT1, and FOXO3a reduced significantly (P<0.05) in the PM2.5 group as compared to the control group. However, their expression levels were increased after NAC intervention. These results suggested that SIRT1 exerted a protective effect against PM2.5-induced respiratory oxidative damage by regulating the expression of FOXO3a. NAC can activate SIRT1 and exert an anti-oxidative role in PM2.5-induced oxidative injury.
Collapse
Affiliation(s)
- Lu Yang
- Department of Respiratory Disease & Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zheng Duan
- Department of Respiratory Disease & Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xin Liu
- Department of Respiratory Disease & Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yadong Yuan
- Department of Respiratory Disease & Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
11
|
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8:51888-51906. [PMID: 28881698 PMCID: PMC5584299 DOI: 10.18632/oncotarget.17128] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress results from an imbalance of the reactive oxygen species/reactive nitrogen species (ROS/RNS) production and the oxidants defense system. Extensive research during the last decades has revealed that oxidative stress can mediate cancer initiation and development by leading not only to molecular damage but also to a disruption of reduction-oxidation (redox) signaling. In order to provide a global overview of the redox signaling pathways, which play a role in cancer formation, we conducted a systematic literature search in PubMed and ISI Web of Science and identified 185 relevant reviews published in the last 10 years. The 20 most frequently described pathways were selected to be presented in this systematic review and could be categorized into 3 groups: Intracellular ROS/RNS generating organelles and enzymes, signal transduction cascades kinases/phosphatases and transcription factors. Intracellular ROS/RNS generation organelles are mitochondria, endoplasmic reticulum and peroxisomes. Enzymes, including NOX, COX, LOX and NOS, are the most prominent enzymes generating ROS/RNS. ROS/RNS act as redox messengers of transmembrane receptors and trigger the activation or inhibition of signal transduction kinases/phosphatases, such as the family members of protein tyrosine kinases and protein tyrosine phosphatases. Furthermore, these reactions activate downstream signaling pathways including protein kinase of the MAPK cascade, PI3K and PKC. The kinases and phosphatases regulate the phosphorylation status of transcription factors including APE1/Ref-1, HIF-1α, AP-1, Nrf2, NF-κB, p53, FOXO, STAT, and β-catenin. Finally, we briefly discuss cancer prevention and treatment opportunities, which address redox pathways and further research needs.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany.,Institute of Health Care and Social Sciences, FOM University, Essen, Germany
| |
Collapse
|
12
|
Meng X, Tan J, Li M, Song S, Miao Y, Zhang Q. Sirt1: Role Under the Condition of Ischemia/Hypoxia. Cell Mol Neurobiol 2017; 37:17-28. [PMID: 26971525 DOI: 10.1007/s10571-016-0355-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022]
Abstract
Silent information regulator factor 2-related enzyme 1 (sirtuin 1, Sirt1) is a nicotinamide adenine dinucleotide-dependent deacetylase, which can deacetylate histone and non-histone proteins and other transcription factors, and is involved in the regulation of many physiological functions, including cell senescence, gene transcription, energy balance, and oxidative stress. Ischemia/hypoxia injury remains an unresolved and complicated situation in the diseases of ischemia stroke, heart failure, and coronary heart disease, especially among the old folks. Studies have demonstrated that aging could enhance the vulnerability of brain, heart, lung, liver, and kidney to ischemia/hypoxia injury and the susceptibility in old folks to ischemia/hypoxia injury might be associated with Sirt1. In this review, we mainly summarize the role of Sirt1 in modulating pathways against energy depletion and its involvement in oxidative stress, apoptosis, and inflammation under the condition of ischemia/hypoxia.
Collapse
Affiliation(s)
- Xiaofei Meng
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Jin Tan
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Mengmeng Li
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Shuling Song
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | | | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China.
| |
Collapse
|
13
|
Zeligs KP, Neuman MK, Annunziata CM. Molecular Pathways: The Balance between Cancer and the Immune System Challenges the Therapeutic Specificity of Targeting Nuclear Factor-κB Signaling for Cancer Treatment. Clin Cancer Res 2016; 22:4302-8. [PMID: 27422962 DOI: 10.1158/1078-0432.ccr-15-1374] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
The NF-κB signaling pathway is a complex network linking extracellular stimuli to cell survival and proliferation. Cytoplasmic signaling to activate NF-κB can occur as part of the DNA damage response or in response to a large variety of activators, including viruses, inflammation, and cell death. NF-κB transcription factors play a fundamental role in tumorigenesis and are implicated in the origination and propagation of both hematologic and solid tumor types, including melanoma, breast, prostate, ovarian, pancreatic, colon, lung, and thyroid cancers. On the other hand, NF-κB signaling is key to immune function and is likely necessary for antitumor immunity. This presents a dilemma when designing therapeutic approaches to target NF-κB. There is growing interest in identifying novel modulators to inhibit NF-κB activity as impeding different steps of the NF-κB pathway has potential to slow tumor growth, progression, and resistance to chemotherapy. Despite significant advances in our understanding of this pathway, our ability to effectively clinically block key targets for cancer therapy remains limited due to on-target effects in normal tissues. Tumor specificity is critical to developing therapeutic strategies targeting this antiapoptotic signaling pathway to maintain antitumor immune surveillance when applying such therapy to patients. Clin Cancer Res; 22(17); 4302-8. ©2016 AACR.
Collapse
Affiliation(s)
- Kristen P Zeligs
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Department of Gynecologic Oncology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Monica K Neuman
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | |
Collapse
|
14
|
Wang S, Pu J, Li N, Li C, Li C, Yu L, Wang X, Fu S, Cui L. CUEDC2 Protects Against Experimental Colitis and Suppresses Excessive Proliferation of Intestinal Mucosa. Dig Dis Sci 2015; 60:3603-9. [PMID: 26182901 DOI: 10.1007/s10620-015-3800-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/04/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND CUEDC2, a CUE domain-containing protein, is highly expressed in many tumors, which also may be associated with inflammation. AIMS In this study, we studied whether CUEDC2 plays a role in the progress of inflammatory bowel disease using CUEDC2 knockout (KO) mice and discussed the effects of CUEDC2 on cell proliferation in colonic mucosa. METHODS CUEDC2 KO mice were administered with drinking dextran sodium sulfate (DSS) to establish colitis mice model. At different time points after DSS administration, body weight and stool consistency of mice were graded. Cytokines in colon tissue such as IL-6 were measured by RT-PCR. NF-κB and STAT3 signaling pathways in colon tissue were assessed by western blotting. Besides, cell proliferation of intestinal mucosa was analyzed by immunohistochemical staining. RESULTS CUEDC2 alleviated the colonic inflammation, showing elevated body weight loss, worse diarrhea, and more severe colonic mucosal injury in CUEDC2 KO mice than WT mice. Moreover, pro-inflammatory cytokines such as IL-6, TNFα, COX2, and MIP2 were significantly elevated. In CUEDC2 KO mice, the NF-κB and STAT3 signaling pathways were increasingly activated in different stages of progression of the colonic inflammation, and the percentage of proliferating cells as indicated by Ki67, CyclinD1, and BrdU in the inflammatory tissues was significantly increased. CONCLUSIONS Our findings demonstrate that CUEDC2 plays an important role in protection from colonic inflammation, primarily by inhibiting the NF-κB and STAT3 signaling pathways and preventing excessive proliferation of the inflammatory epithelial cell.
Collapse
Affiliation(s)
- Shaoxin Wang
- Department of Digestive, Navy General Hospital, Beijing, 100048, China.
| | - Jiang Pu
- Department of Digestive, Navy General Hospital, Beijing, 100048, China
| | - Na Li
- Department of Laboratory, Navy General Hospital, Beijing, 100048, China
| | - Chuanfeng Li
- Department of Digestive, The Third Hospital of Peking University, Beijing, 100191, China
| | - Chao Li
- Department of Digestive, Navy General Hospital, Beijing, 100048, China
| | - Lan Yu
- Department of Digestive, Navy General Hospital, Beijing, 100048, China
| | - Xiaohui Wang
- Department of Digestive, Navy General Hospital, Beijing, 100048, China
| | - Shanfeng Fu
- Department of Digestive, Navy General Hospital, Beijing, 100048, China
| | - Lihong Cui
- Department of Digestive, Navy General Hospital, Beijing, 100048, China.
| |
Collapse
|
15
|
Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal Cell Pathol (Amst) 2015; 2015:897327. [PMID: 26236580 PMCID: PMC4506835 DOI: 10.1155/2015/897327] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeutic targets. Processes including oxidant/antioxidant, protease/antiprotease, and proliferative/antiproliferative balance and control of inflammatory response become dysfunctional during aging as well as in COPD. Recently it was suggested that Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to oxidative stress and chronic inflammation, is implicated in both development and progression of COPD. The present review focuses on the involvement of SIRT1 in the regulation of redox state, inflammation, and premature senescence, all crucial characteristics of COPD phenotypes. Recent evidence corroborating the statement of the “aging theory for COPD” was also discussed.
Collapse
|
16
|
Priber J, Fonai F, Jakus PB, Racz B, Chinopoulos C, Tretter L, Gallyas F, Sumegi B, Veres B. Cyclophilin D disruption attenuates lipopolysaccharide-induced inflammatory response in primary mouse macrophages. Biochem Cell Biol 2015; 93:241-50. [PMID: 25728038 DOI: 10.1139/bcb-2014-0120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
According to recent results, various mitochondrial processes can actively regulate the immune response. In the present report, we studied whether mitochondrial permeability transition (mPT) has such a role. To this end, we compared bacterial lipopolysaccharide (LPS)-induced inflammatory response in cyclophilin D (CypD) knock-out and wild-type mouse resident peritoneal macrophages. CypD is a regulator of mPT; therefore, mPT is damaged in CypD(-/-) cells. We chose this genetic modification-based model because the mPT inhibitor cyclosporine A regulates inflammatory processes by several pathways unrelated to the mitochondria. The LPS increased mitochondrial depolarisation, cellular and mitochondrial reactive oxygen species production, nuclear factor-κB activation, and nitrite- and tumour necrosis factor α accumulation in wild-type cells, but these changes were diminished or absent in the CypD-deficient macrophages. Additionally, LPS enhanced Akt phosphorylation/activation as well as FOXO1 and FOXO3a phosphorylation/inactivation both in wild-type and CypD(-/-) cells. However, Akt and FOXO phosphorylation was significantly more pronounced in CypD-deficient compared to wild-type macrophages. These results provide the first pieces of experimental evidence for the functional regulatory role of mPT in the LPS-induced early inflammatory response of macrophages.
Collapse
Affiliation(s)
- Janos Priber
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, 12 Szigeti St., H-7624 Pecs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cheng YY, Kao CL, Ma HI, Hung CH, Wang CT, Liu DH, Chen PY, Tsai KL. SIRT1-related inhibition of pro-inflammatory responses and oxidative stress are involved in the mechanism of nonspecific low back pain relief after exercise through modulation of Toll-like receptor 4. J Biochem 2015; 158:299-308. [PMID: 25922201 DOI: 10.1093/jb/mvv041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 02/06/2023] Open
Abstract
Low back pain is a common clinical problem that causes disability and impaired quality of life. While the reason behind low back pain was largely considered to be of musculoskeletal origin, the contribution of inflammatory cytokines and oxidative stress could never be overlooked. Exercise has been proven to be an effective approach to treat low back pain. However, the mechanism of the exercise effect on the inflammatory cytokines and oxidative stress is still largely unknown. In this study, we revealed that exercise intervention reduces Toll-like receptor 4 (TLR-4) pathway and enhances Sirtuin 1 (SIRT1) expression in low back pain patients. We also confirmed that exercise up-regulates the expression of peroxisome proliferator-activated receptor-gamma, PPAR-γ coactivator-1 and FoxOs family proteins and also increases the activity of catalase and superoxide dismutase in patients with low back pain. Furthermore, we found that exercise intervention attenuates the oxidative stress, pro-inflammatory cytokine concentrations and p53 expression in patients with low back pain. This study demonstrates that exercise intervention improves low back pain symptoms through regulation of the SIRT1 axis with repression of oxidative stress and TLR-4 inhibition.
Collapse
Affiliation(s)
- Yuan-Yang Cheng
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taiwan
| | - Chung-Lan Kao
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsin-I Ma
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; and
| | - Ching-Hsia Hung
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Tien Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ding-Hao Liu
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Yin Chen
- Department of Physical Medicine and Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kun-Ling Tsai
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. Arthritis Rheumatol 2015; 66:3349-58. [PMID: 25186470 DOI: 10.1002/art.38868] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE A major signaling pathway that regulates cellular aging is the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO transcription factor axis. We previously observed that FoxO transcription factors are dysregulated in aged and OA cartilage. The objective of this study was to investigate the impact of down-regulated FoxO transcription factors on chondrocytes. METHODS Small interfering RNAs (siRNAs) targeting FOXO1 (siFOXO1) and FOXO3 (siFOXO3) were transfected into human articular chondrocytes. Cell viability following treatment with the oxidant tert-butyl-hydroperoxide (tBHP) was measured by MTT assay. Caspase 3/7 activation and apoptotic cells were examined. Gene and protein expression of antioxidant proteins and autophagy-related proteins and changes in inflammatory mediators following treatment with interleukin-1β were assessed. Cells transfected with FOXO plasmids were also analyzed. RESULTS Cell viability was significantly reduced by siFOXO after treatment with tBHP. Apoptosis accompanied by caspase activation was significantly increased in siFOXO-transfected chondrocytes. Knockdown of FOXO1 and FOXO1+3 resulted in significant reductions in levels of glutathione peroxidase 1 (GPX-1), catalase, light chain 3 (LC3), Beclin1, and sirtuin 1 (SIRT-1) proteins following treatment with tBHP. In contrast, the constitutive active form of FOXO3 increased cell viability while inducing GPX-1, Beclin1, and LC3 in response to tBHP. Expression and production of ADAMTS-4 and chemerin were significantly increased in siFOXO-transfected chondrocytes. CONCLUSION Reduced expression of FoxO transcription factors in chondrocytes increased susceptibility to cell death induced by oxidative stress. This was associated with reduced levels of antioxidant proteins and autophagy-related proteins. Our data provide evidence for a key role of FoxO transcription factors as regulators of chondrocyte oxidative stress resistance and tissue homeostasis.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | |
Collapse
|
19
|
Corella D, Ordovás JM. Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 2014; 18:53-73. [PMID: 25159268 DOI: 10.1016/j.arr.2014.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
In the study of longevity, increasing importance is being placed on the concept of healthy aging rather than considering the total number of years lived. Although the concept of healthy lifespan needs to be defined better, we know that cardiovascular diseases (CVDs) are the main age-related diseases. Thus, controlling risk factors will contribute to reducing their incidence, leading to healthy lifespan. CVDs are complex diseases influenced by numerous genetic and environmental factors. Numerous gene variants that are associated with a greater or lesser risk of the different types of CVD and of intermediate phenotypes (i.e., hypercholesterolemia, hypertension, diabetes) have been successfully identified. However, despite the close link between aging and CVD, studies analyzing the genes related to human longevity have not obtained consistent results and there has been little coincidence in the genes identified in both fields. The APOE gene stands out as an exception, given that it has been identified as being relevant in CVD and longevity. This review analyzes the genomic and epigenomic factors that may contribute to this, ranging from identifying longevity genes in model organisms to the importance of gene-diet interactions (outstanding among which is the case of the TCF7L2 gene).
Collapse
|
20
|
Liu X, Greer C, Secombe J. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress. PLoS Genet 2014; 10:e1004676. [PMID: 25329053 PMCID: PMC4199495 DOI: 10.1371/journal.pgen.1004676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid) as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding.
Collapse
Affiliation(s)
- Xingyin Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christina Greer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
21
|
Akasaki Y, Alvarez-Garcia O, Saito M, Caramés B, Iwamoto Y, Lotz MK. FoxO transcription factors support oxidative stress resistance in human chondrocytes. ARTHRITIS & RHEUMATOLOGY (HOBOKEN, N.J.) 2014. [PMID: 25186470 DOI: 10.1002/art.38868.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A major signaling pathway that regulates cellular aging is the insulin/insulin-like growth factor 1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/Akt/FoxO transcription factor axis. We previously observed that FoxO transcription factors are dysregulated in aged and OA cartilage. The objective of this study was to investigate the impact of down-regulated FoxO transcription factors on chondrocytes. METHODS Small interfering RNAs (siRNAs) targeting FOXO1 (siFOXO1) and FOXO3 (siFOXO3) were transfected into human articular chondrocytes. Cell viability following treatment with the oxidant tert-butyl-hydroperoxide (tBHP) was measured by MTT assay. Caspase 3/7 activation and apoptotic cells were examined. Gene and protein expression of antioxidant proteins and autophagy-related proteins and changes in inflammatory mediators following treatment with interleukin-1β were assessed. Cells transfected with FOXO plasmids were also analyzed. RESULTS Cell viability was significantly reduced by siFOXO after treatment with tBHP. Apoptosis accompanied by caspase activation was significantly increased in siFOXO-transfected chondrocytes. Knockdown of FOXO1 and FOXO1+3 resulted in significant reductions in levels of glutathione peroxidase 1 (GPX-1), catalase, light chain 3 (LC3), Beclin1, and sirtuin 1 (SIRT-1) proteins following treatment with tBHP. In contrast, the constitutive active form of FOXO3 increased cell viability while inducing GPX-1, Beclin1, and LC3 in response to tBHP. Expression and production of ADAMTS-4 and chemerin were significantly increased in siFOXO-transfected chondrocytes. CONCLUSION Reduced expression of FoxO transcription factors in chondrocytes increased susceptibility to cell death induced by oxidative stress. This was associated with reduced levels of antioxidant proteins and autophagy-related proteins. Our data provide evidence for a key role of FoxO transcription factors as regulators of chondrocyte oxidative stress resistance and tissue homeostasis.
Collapse
Affiliation(s)
- Yukio Akasaki
- The Scripps Research Institute, La Jolla, California
| | | | | | | | | | | |
Collapse
|
22
|
Su L, Liu X, Chai N, Lv L, Wang R, Li X, Nie Y, Shi Y, Fan D. The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer. BMC Cancer 2014; 14:378. [PMID: 24886657 PMCID: PMC4063225 DOI: 10.1186/1471-2407-14-378] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/20/2014] [Indexed: 01/07/2023] Open
Abstract
Background FOXO4, a member of the FOXO family of transcription factors, is currently the focus of intense study. Its role and function in gastric cancer have not been fully elucidated. The present study was aimed to investigate the expression profile of FOXO4 in gastric cancer and the effect of FOXO4 on cancer cell growth and metastasis. Methods Immunohistochemistry, Western blotting and qRT-PCR were performed to detect the FOXO4 expression in gastric cancer cells and tissues. Cell biological assays, subcutaneous tumorigenicity and tail vein metastatic assay in combination with lentivirus construction were performed to detect the impact of FOXO4 to gastric cancer in proliferation and metastasis in vitro and in vivo. Confocal and qRT-PCR were performed to explore the mechanisms. Results We found that the expression of FOXO4 was decreased significantly in most gastric cancer tissues and in various human gastric cancer cell lines. Up-regulating FOXO4 inhibited the growth and metastasis of gastric cancer cell lines in vitro and led to dramatic attenuation of tumor growth, and liver and lung metastasis in vivo, whereas down-regulating FOXO4 with specific siRNAs promoted the growth and metastasis of gastric cancer cell lines. Furthermore, we found that up-regulating FOXO4 could induce significant G1 arrest and S phase reduction and down-regulation of the expression of vimentin. Conclusion Our data suggest that loss of FOXO4 expression contributes to gastric cancer growth and metastasis, and it may serve as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yongquan Shi
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province 710032, People's Republic of China.
| | | |
Collapse
|
23
|
Resveratrol attenuates hypoxic injury in a primary hepatocyte model of hemorrhagic shock and resuscitation. J Trauma Acute Care Surg 2014; 76:409-17. [PMID: 24458046 DOI: 10.1097/ta.0000000000000096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxidative stress following hemorrhagic shock and resuscitation (HSR) is regulated, in part, by inflammatory and apoptotic mediators such as necrosis factor κB (NF-κB) and p53. Sirtuin 1 (Sirt-1) is a metabolic intermediary that regulates stress responses by suppressing NF-κB and p53 activity. Resveratrol is a naturally occurring polyphenolic antioxidant and Sirt-1 agonist. The aim of this study was to determine whether resveratrol protects hepatocytes following HSR or hypoxia. METHODS In vivo, HSR was achieved in male rats by arterial blood withdrawal to 30 ± 2 mm Hg for 1 hour before resuscitation with or without resveratrol (Res, 30 mg/kg). Hepatic tissue was stained and scored for necrosis, interleukin 6, and Sirt-1 expression. In vitro, primary rat hepatocytes were subjected to 8 hours of hypoxia without or with Res (100 µM). Cells were analyzed immediately or after 6 hours of normoxia, for survival and markers of injury (lactate dehydrogenase assay, lipid peroxidation, and mitochondrial integrity). Cell lysates were collected for cytochrome c analysis and immunoprecipitated using antibodies against NF-κB (p65) or p53. RESULTS In vivo, animals subject to HSR exhibited increased expression of markers of hepatocyte damage compared with those sham operated, concomitant with lower Sirt-1 expression. In vitro, hypoxia followed by normoxia resulted in increased cell death, an effect that was blunted by Res. Analysis of cell and mitochondrial function demonstrated that Res inhibited the detrimental effects of hypoxia in isolated hepatocytes. CONCLUSION Resveratrol prevents cell death in HSR and exerts a protective effect on the mitochondria in a hepatocyte model of hypoxic injury-reoxygenation possibly via Sirt-1 modulation of p53 and NF-κB activity.
Collapse
|
24
|
Yu DA, Yoon J, Ko YS, Park J, Kim SY, Kim MA, Kim JH, Jung J, Cheon Y, Lee HS, Kim WH, Lee BL. Forkhead transcription factor FOXO1 inhibits nuclear factor-κB in gastric cancer. APMIS 2014; 122:848-55. [DOI: 10.1111/apm.12247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/18/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Da-Ae Yu
- Department of Anatomy; Seoul National University College of Medicine; Seoul South Korea
| | - Jiyeon Yoon
- Department of Anatomy; Seoul National University College of Medicine; Seoul South Korea
| | - Young San Ko
- Department of Anatomy; Seoul National University College of Medicine; Seoul South Korea
| | - Jinju Park
- Cancer Research Institute; Department of Tumor Biology; Seoul National University College of Medicine; Seoul South Korea
| | - Sue Youn Kim
- Department of Anatomy; Seoul National University College of Medicine; Seoul South Korea
| | - Min A Kim
- Department of Pathology; Seoul National University College of Medicine; Seoul South Korea
| | - Ji Hun Kim
- Department of Pathology; Asan Medical Center; University of Ulsan College of Medicine; Seoul South Korea
| | - Jieun Jung
- Department of Nanobiomedical Science; Dankook University; Cheonan South Korea
| | - Younghee Cheon
- Department of Pediatrics; College of Medicine; Yeungnam University; Daegu South Korea
| | - Hye Seung Lee
- Department of Pathology; Seoul National University Bundang Hospital; Seongnam South Korea
| | - Woo Ho Kim
- Department of Pathology; Seoul National University College of Medicine; Seoul South Korea
| | - Byung Lan Lee
- Department of Anatomy; Seoul National University College of Medicine; Seoul South Korea
- Cancer Research Institute; Department of Tumor Biology; Seoul National University College of Medicine; Seoul South Korea
- Ischemic/Hypoxic Disease Institute Medical Research Center; Seoul National University College of Medicine; Seoul South Korea
| |
Collapse
|
25
|
Abstract
Heat shock proteins (HSP) are molecular chaperones and have been implicated in longevity and aging in many species. Their major functions include chaperoning misfolded or newly synthesised polypeptides, protecting cells from proteotoxic stress, and processing of immunogenic agents. These proteins are expressed constitutively and can be induced by stresses such as heat, oxidative stress and many more. The induction of HSP in aging could potentially maintain protein homeostasis and longevity by refolding the damaged proteins which accumulate during aging and are toxic to cells. HSP are shown to increase life span in model organisms such as Caenorhabditis elegans and decrease aging-related proteotoxicity. Thus, decrease in HSP in aging is associated with disruption of cellular homeostasis which causes diseases such as cancer, cell senescence and neurodegeneration. HSP levels are decreased with aging in most organs including neurons. Aging also causes attenuation or alteration of many signalling pathways as well as the expression of transcription factors such as heat shock factor (HSF). The alteration in regulation and synthesis of Forkhead box O3a (FoxO3a) family of transcription factors as well as major antioxidant enzymes (manganese superoxide dismutase, catalase) are also seen in aging. Among many signalling mechanisms involved in altering longevity and aging, the insulin/IGF-1 pathway and the Sir2 deacetylase are highly significant. This review enquires into the role of some of these pathways in longevity/aging along with HSP.
Collapse
Affiliation(s)
- Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|