1
|
Hwang SJ, Jung Y, Song Y, Park S, Park Y, Lee H. Enhanced anti-angiogenic activity of novel melatonin-like agents. J Pineal Res 2021; 71:e12739. [PMID: 33955074 PMCID: PMC8365647 DOI: 10.1111/jpi.12739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) plays an important role in cellular responses to hypoxia, including the transcriptional activation of several genes involved in tumor angiogenesis. Melatonin, also known as N-acetyl-5-methopxytryptamine, is produced naturally by the pineal gland and has anti-angiogenic effects in cancer through its ability to modulate HIF-1α activity. However, the use of melatonin as a therapeutic is limited by its low oral bioavailability and short half-life. Here, we synthesized melatonin-like molecules with enhanced HIF-1α targeting activity and less toxicity and investigated their effects on tumor growth and angiogenesis, as well as the underlying molecular mechanisms. Among melatonin derivatives, N-butyryl-5-methoxytryptamine (NB-5-MT) showed the most potent HIF-1α targeting activity. This molecule was able to (a) reduce the expression of HIF-1α at the protein level, (b) reduce the transcription of HIF-1α target genes, (c) reduce reactive oxygen species (ROS) generation, (d) decrease angiogenesis in vitro and in vivo, and (e) suppress tumor size and metastasis. In addition, NB-5-MT showed improved anti-angiogenic activity compared with melatonin due to its enhanced cellular uptake. NB-5-MT is thus a promising lead for the future development of anticancer compounds with HIF-1α targeting activity. Given that HIF-1α is overexpressed in the majority of human cancers, the melatonin derivative NB-5-MT could represent a novel potent therapeutic agent for cancer.
Collapse
Affiliation(s)
- Su Jung Hwang
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| | - Yeonghun Jung
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Ye‐Seul Song
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| | - Suryeon Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Yohan Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and ResearchInje UniversityGimhaeGyungnamKorea
| | - Hyo‐Jong Lee
- School of PharmacySungkyunkwan UniversitySuwonGyeonggi‐doKorea
| |
Collapse
|
2
|
A STAT3 of Addiction: Adipose Tissue, Adipocytokine Signalling and STAT3 as Mediators of Metabolic Remodelling in the Tumour Microenvironment. Cells 2020; 9:cells9041043. [PMID: 32331320 PMCID: PMC7226520 DOI: 10.3390/cells9041043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling of the tumour microenvironment is a major mechanism by which cancer cells survive and resist treatment. The pro-oncogenic inflammatory cascade released by adipose tissue promotes oncogenic transformation, proliferation, angiogenesis, metastasis and evasion of apoptosis. STAT3 has emerged as an important mediator of metabolic remodelling. As a downstream effector of adipocytokines and cytokines, its canonical and non-canonical activities affect mitochondrial functioning and cancer metabolism. In this review, we examine the central role played by the crosstalk between the transcriptional and mitochondrial roles of STAT3 to promote survival and further oncogenesis within the tumour microenvironment with a particular focus on adipose-breast cancer interactions.
Collapse
|
3
|
Milani M, Venturini S, Bonardi S, Allevi G, Strina C, Cappelletti MR, Corona SP, Aguggini S, Bottini A, Berruti A, Jubb A, Campo L, Harris AL, Gatter K, Fox SB, Generali D, Roviello G. Hypoxia-related biological markers as predictors of epirubicin-based treatment responsiveness and resistance in locally advanced breast cancer. Oncotarget 2017; 8:78870-78881. [PMID: 29108271 PMCID: PMC5668004 DOI: 10.18632/oncotarget.20239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To identify hypoxia-related biomarkers indicative of response and resistance to epirubicin treatment in patients with locally advanced breast cancer. PATIENTS AND METHODS One hundred seventy-six women with T2-4 N0-1 breast tumours were randomly assigned to receive epirubicin 120 mg/m2/1-21 (EPI ARM), epirubicin 120 mg/m2/1-21 + erythropoietin 10.000 IU sc three times weekly (EPI-EPO ARM) and epirubicin 40 mg/m2/w-q21 (EPI-W ARM). Sixteen tumour proteins involved in cell survival, hypoxia, angiogenesis and growth factor, were assessed by immunohistochemistry in pre-treatment samples. A multivariate generalized linear regression approach was applied using a penalized least-square minimization to perform variable selection and regularization. RESULTS VEGF and GLUT-1 expression were significantly positively associated with complete response (CR) to treatment in all leave-one-out iterations. Bcl-2 expression was inversely correlated with pCR, whilst EPO expression was positively correlated with pathological complete response (pCR). Haemaglobin and HIF-1a nuclear expression were inversely correlated with pCR. HB and HIF-1a expression were associated with a higher risk of relapse and overall survival. CONCLUSION Hypoxic biomarkers determines the epirubicin resistance in breast cancer. Assessment of such biomarkers, may be useful for predicting chemosensitivity and also anthracycline-based treatment outcome.
Collapse
Affiliation(s)
- Manuela Milani
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | | | - Simone Bonardi
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | - Giovanni Allevi
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | - Carla Strina
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | - Maria Rosa Cappelletti
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | | | - Sergio Aguggini
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | - Alberto Bottini
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
| | - Alfredo Berruti
- U.O. Oncologia Medica, Spedali Civili si Brescia, University of Brescia, Brescia, Italy
| | - Adrian Jubb
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Leticia Campo
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Kevin Gatter
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Daniele Generali
- U.O. Multidisciplinare di Patologia Mammaria, U.S Terapia Molecolare e Farmacogenomica, ASST Cremona, Viale Concordia 1, Cremona, Italy
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, Trieste, Italy
| | - Giandomenico Roviello
- Department of Medical, Surgery and Health Sciences, University of Trieste, Piazza Ospitale 1, Trieste, Italy
- Department of Oncology, Medical Oncology Unit, San Donato Hospital, Italy
| |
Collapse
|
4
|
Parsa Y, Mirmalek SA, Kani FE, Aidun A, Salimi-Tabatabaee SA, Yadollah-Damavandi S, Jangholi E, Parsa T, Shahverdi E. A Review of the Clinical Implications of Breast Cancer Biology. Electron Physician 2016; 8:2416-24. [PMID: 27382453 PMCID: PMC4930263 DOI: 10.19082/2416] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/14/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Histologically similar tumors may have different prognoses and responses to treatment. These differences are due to molecular differences. Hence, in this review, the biological interaction of breast cancer in several different areas is discussed. In addition, the performance and clinical application of the most widely-recognized biomarkers, metastasis, and recurrences from a biological perspective and current global advances in these areas are addressed. OBJECTIVE This review provides the performance and clinical application of the most widely-recognized biomarkers, metastasis, and recurrences from the biological perspective and current global advances in these areas. METHODS PubMed, Scopus, and Google Scholar were searched comprehensively with combinations of the following keywords: "breast cancer," "biological markers," and "clinical." The definition of breast cancer, diagnostic methods, biological markers, and available treatment approaches were extracted from the literature. RESULTS Estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2), and Ki-67 are the most well-known biological markers that have important roles in prognosis and response to therapeutic methods. Some studies showed the response of ER-positive and PR-negative tumors to anti-estrogenic treatment to be lower than ER-positive and PR-positive tumors. Patients with high expression of HER-2 and Ki-67 had a poor prognosis. In addition, recent investigations indicated the roles of new biomarkers, such as VEGF, IGF, P53 and P21, which are associated with many factors, such as age, race, and histological features. CONCLUSION The objective of scientists, from establishing a relationship between cancer biology infrastructures with clinical manifestations, is to find new ways of prevention and progression inhibition and then possible introduction of less dangerous and better treatments to resolve this dilemma of human society.
Collapse
Affiliation(s)
- Yekta Parsa
- Young Researchers and Elite Club, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Seyed Abbas Mirmalek
- Department of Surgery, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Fatemeh Elham Kani
- Department of Surgery, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Amir Aidun
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | | - Ehsan Jangholi
- Young Researchers and Elite Club, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Tina Parsa
- Young Researchers and Elite Club, Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Ehsan Shahverdi
- Students’ Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fujisue Y, Nakagawa T, Takahara K, Inamoto T, Kiyama S, Azuma H, Asahi M. Induction of erythropoietin increases the cell proliferation rate in a hypoxia-inducible factor-1-dependent and -independent manner in renal cell carcinoma cell lines. Oncol Lett 2013; 5:1765-1770. [PMID: 23833638 PMCID: PMC3701060 DOI: 10.3892/ol.2013.1283] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
Abstract
Erythropoietin (Epo) is a potent inducer of erythropoiesis that is mainly produced in the kidney. Epo is expressed not only in the normal kidney, but also in renal cell carcinomas (RCCs). The aim of the present study was to gain insights into the roles of Epo and its receptor (EpoR) in RCC cells. The study used two RCC cell lines, Caki-1 and SKRC44, in which Epo and EpoR are known to be highly expressed. The proliferation rate and expression level of hypoxia-inducible factor-1α (HIF-1α) were measured prior to and following Epo treatment and under normoxic and hypoxic conditions. To examine whether HIF-1α or Epo were involved in cellular proliferation during hypoxia, these proteins were knocked down using small interfering RNA (siRNA) in Caki-1 and SKRC44 cells. The results demonstrated that Epo enhanced the proliferation of the Caki-1 and SKRC44 cells. HIF-1α expression was increased upon the induction of hypoxia in the Caki-1 cells, but remained unaffected in the SKRC44 cells. The proliferation rate was increased under hypoxic conditions in the Caki-1 cells, but was decreased in the SKRC44 cells. Under hypoxic conditions, the proliferation of the Caki-1 cells was significantly reduced by the knock-down of HIF-1α or Epo, while the proliferation of the SKRC44 cells was significantly suppressed by the knock-down of Epo, but not HIF-1α. In conclusion, these data suggest that the induction of Epo may accelerate the proliferation of the RCC cell lines in either a HIF-1α-dependent or -independent manner.
Collapse
Affiliation(s)
- Yutaka Fujisue
- Departments of Urology, Faculty of Medicine, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
7
|
Kandala PK, Srivastava SK. Diindolylmethane suppresses ovarian cancer growth and potentiates the effect of cisplatin in tumor mouse model by targeting signal transducer and activator of transcription 3 (STAT3). BMC Med 2012; 10:9. [PMID: 22280969 PMCID: PMC3298725 DOI: 10.1186/1741-7015-10-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is activated in majority of ovarian tumors and confers resistance to cisplatin treatment in patients with ovarian cancer. We have reported previously that diindolylmethane (DIM) inhibits the growth of ovarian cancer cells. However, to date the exact mechanism by which DIM induces growth suppressive effects has not been clear. In this report the mode of action of DIM is investigated. METHODS Six human ovarian cancer cell lines and an ovarian tumor xenograft animal model were used to study the effect of diindolylmethane alone or in combination with cisplatin. RESULTS Diindolylmethane treatment induced apoptosis in all six ovarian cancer cell lines. Phosphorylation of STAT3 at Tyr-705 and Ser-727 was reduced by DIM in a concentration-dependent manner. In addition, diindolylmethane treatment inhibited nuclear translocation, DNA binding, and transcriptional activity of STAT3. Interleukin (IL)-6-induced phosphorylation of STAT3 at Tyr-705 was significantly blocked by DIM. Overexpression of STAT3 by gene transfection blocked DIM-induced apoptosis. In addition, DIM treatment reduced the levels of IL-6 in ovarian cancer cells and in the tumors. DIM treatment also inhibited cell invasion and angiogenesis by suppressing hypoxia-inducible factor 1α (HIF-1α) and vascular epithelial growth factor (VEGF). Importantly, diindolylmethane treatment potentiated the effects of cisplatin in SKOV-3 cells by targeting STAT3. Oral administration of 3 mg diindolylmethane per day and subsequent administration of cisplatin substantially inhibited in vivo tumor growth. Western blotting analysis of tumor lysates indicated increased apoptosis and reduced STAT3 activation. CONCLUSIONS These findings provide a rationale for further clinical investigation of DIM alone or in combination for chemoprevention and/or chemotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Prabodh K Kandala
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | |
Collapse
|