Genotoxic mechanisms for the carcinogenicity of the environmental pollutants and carcinogens o-anisidine and 2-nitroanisole follow from adducts generated by their metabolite N-(2-methoxyphenyl)-hydroxylamine with deoxyguanosine in DNA.
Interdiscip Toxicol 2011;
2:24-7. [PMID:
21217841 PMCID:
PMC2984092 DOI:
10.2478/v10102-009-0004-4]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 03/25/2009] [Accepted: 04/01/2009] [Indexed: 11/21/2022] Open
Abstract
An aromatic amine, o-anisidine (2-methoxyaniline) and its oxidative counterpart, 2-nitroanisole (2-methoxynitrobenzene), are the industrial and environmental pollutants causing tumors of the urinary bladder in rats and mice. Both carcinogens are activated to the same proximate carcinogenic metabolite, N-(2-methoxyphenyl)hydroxylamine, which spontaneously decomposes to nitrenium and/or carbenium ions responsible for formation of deoxyguanosine adducts in DNA in vitro and in vivo. In other words, generation of N-(2-methoxyphenyl)hydroxylamine is responsible for the genotoxic mechanisms of the o-anisidine and 2-nitroanisole carcinogenicity. Analogous enzymes of human and rat livers are capable of activating these carcinogens. Namely, human and rat cytochorme P4502E1 is the major enzyme oxidizing o-anisidine to N-(2-methoxyphenyl)hydroxylamine, while xanthine oxidase of both species reduces 2-nitroanisole to this metabolite. Likewise, O-demethylation of 2-nitroanisole, which is the detoxication pathway of its metabolism, is also catalyzed by the same human and rat enzyme, cytochorme P450 2E1. The results demonstrate that the rat is a suitable animal model mimicking the fate of both carcinogens in humans and suggest that both compounds are potential carcinogens also for humans.
Collapse