1
|
Oh HJ, Chung E, Kim J, Kim MJ, Kim GA, Lee SH, Ra K, Eom K, Park S, Chae JH, Kim JS, Lee BC. Generation of a Dystrophin Mutant in Dog by Nuclear Transfer Using CRISPR/Cas9-Mediated Somatic Cells: A Preliminary Study. Int J Mol Sci 2022; 23:ijms23052898. [PMID: 35270040 PMCID: PMC8911381 DOI: 10.3390/ijms23052898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/27/2023] Open
Abstract
Dystrophinopathy is caused by mutations in the dystrophin gene, which lead to progressive muscle degeneration, necrosis, and finally, death. Recently, golden retrievers have been suggested as a useful animal model for studying human dystrophinopathy, but the model has limitations due to difficulty in maintaining the genetic background using conventional breeding. In this study, we successfully generated a dystrophin mutant dog using the CRISPR/Cas9 system and somatic cell nuclear transfer. The dystrophin mutant dog displayed phenotypes such as elevated serum creatine kinase, dystrophin deficiency, skeletal muscle defects, an abnormal electrocardiogram, and avoidance of ambulation. These results indicate that donor cells with CRISPR/Cas9 for a specific gene combined with the somatic cell nuclear transfer technique can efficiently produce a dystrophin mutant dog, which will help in the successful development of gene therapy drugs for dogs and humans.
Collapse
Affiliation(s)
- Hyun Ju Oh
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Eugene Chung
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jaehwan Kim
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Min Jung Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Geon A. Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Department of Clinical Pathology, College of Health Science, Eulji University, Uijeongbu 11759, Korea
| | - Seok Hee Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
| | - Kidong Eom
- Department of Veterinary Medical Imaging, College of Veterinary Medicine, Konkuk University, Seoul 5029, Korea; (J.K.); (K.E.)
| | - Soojin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; (S.P.); (J.-H.C.)
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, Korea;
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (H.J.O.); (M.J.K.); (G.A.K.); (S.H.L.); (K.R.)
- Correspondence: (J.-S.K.); (B.C.L.); Tel.: +82-2-880-9327 (J.-S.K.); +82-2-880-1269 (B.C.L.)
| |
Collapse
|
2
|
Technical, Biological and Molecular Aspects of Somatic Cell Nuclear Transfer – A Review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Since the announcement of the birth of the first cloned mammal in 1997, Dolly the sheep, 24 animal species including laboratory, farm, and wild animals have been cloned. The technique for somatic cloning involves transfer of the donor nucleus of a somatic cell into an enucleated oocyte at the metaphase II (MII) stage for the generation of a new individual, genetically identical to the somatic cell donor. There is increasing interest in animal cloning for different purposes such as rescue of endangered animals, replication of superior farm animals, production of genetically engineered animals, creation of biomedical models, and basic research. However, the efficiency of cloning remains relatively low. High abortion, embryonic, and fetal mortality rates are frequently observed. Moreover, aberrant developmental patterns during or after birth are reported. Researchers attribute these abnormal phenotypes mainly to incomplete nuclear remodeling, resulting in incomplete reprogramming. Nevertheless, multiple factors influence the success of each step of the somatic cloning process. Various strategies have been used to improve the efficiency of nuclear transfer and most of the phenotypically normal born clones can survive, grow, and reproduce. This paper will present some technical, biological, and molecular aspects of somatic cloning, along with remarkable achievements and current improvements.
Collapse
|
3
|
Skrzyszowska M, Samiec M. Generating Cloned Goats by Somatic Cell Nuclear Transfer-Molecular Determinants and Application to Transgenics and Biomedicine. Int J Mol Sci 2021; 22:ijms22147490. [PMID: 34299109 PMCID: PMC8306346 DOI: 10.3390/ijms22147490] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
The domestic goat (Capra aegagrus hircus), a mammalian species with high genetic merit for production of milk and meat, can be a tremendously valuable tool for transgenic research. This research is focused on the production and multiplication of genetically engineered or genome-edited cloned specimens by applying somatic cell nuclear transfer (SCNT), which is a dynamically developing assisted reproductive technology (ART). The efficiency of generating the SCNT-derived embryos, conceptuses, and progeny in goats was found to be determined by a variety of factors controlling the biological, molecular, and epigenetic events. On the one hand, the pivotal objective of our paper was to demonstrate the progress and the state-of-the-art achievements related to the innovative and highly efficient solutions used for the creation of transgenic cloned does and bucks. On the other hand, this review seeks to highlight not only current goals and obstacles but also future challenges to be faced by the approaches applied to propagate genetically modified SCNT-derived goats for the purposes of pharmacology, biomedicine, nutritional biotechnology, the agri-food industry, and modern livestock breeding.
Collapse
|
4
|
Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int J Mol Sci 2021; 22:ijms22063099. [PMID: 33803567 PMCID: PMC8002851 DOI: 10.3390/ijms22063099] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The effectiveness of somatic cell nuclear transfer (SCNT) in mammals seems to be still characterized by the disappointingly low rates of cloned embryos, fetuses, and progeny generated. These rates are measured in relation to the numbers of nuclear-transferred oocytes and can vary depending on the technique applied to the reconstruction of enucleated oocytes. The SCNT efficiency is also largely affected by the capability of donor nuclei to be epigenetically reprogrammed in a cytoplasm of reconstructed oocytes. The epigenetic reprogrammability of donor nuclei in SCNT-derived embryos appears to be biased, to a great extent, by the extranuclear (cytoplasmic) inheritance of mitochondrial DNA (mtDNA) fractions originating from donor cells. A high frequency of mtDNA heteroplasmy occurrence can lead to disturbances in the intergenomic crosstalk between mitochondrial and nuclear compartments during the early embryogenesis of SCNT-derived embryos. These disturbances can give rise to incorrect and incomplete epigenetic reprogramming of donor nuclei in mammalian cloned embryos. The dwindling reprogrammability of donor nuclei in the blastomeres of SCNT-derived embryos can also be impacted by impaired epigenetic rearrangements within terminal ends of donor cell-descended chromosomes (i.e., telomeres). Therefore, dysfunctions in epigenetic reprogramming of donor nuclei can contribute to the enhanced attrition of telomeres. This accelerates the processes of epigenomic aging and replicative senescence in the cells forming various tissues and organs of cloned fetuses and progeny. For all the above-mentioned reasons, the current paper aims to overview the state of the art in not only molecular mechanisms underlying intergenomic communication between nuclear and mtDNA molecules in cloned embryos but also intrinsic determinants affecting unfaithful epigenetic reprogrammability of telomeres. The latter is related to their abrasion within somatic cell-inherited chromosomes.
Collapse
|
5
|
Teplitz GM, Shi M, Sirard MA, Lombardo DM. Coculture of porcine luteal cells during in vitro porcine oocyte maturation affects blastocyst gene expression and developmental potential. Theriogenology 2021; 166:124-134. [PMID: 33735666 DOI: 10.1016/j.theriogenology.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Oocyte maturation in culture is still the weakest part of in vitro fertilization (IVF) and coculture with somatic cells may be an alternative to improve suboptimal culture conditions, especially in the pig in which maturation takes more than 44 h. In the present study, we investigated the effect of a coculture system of porcine luteal cells (PLC) during in vitro maturation (IVM) on embryo development and gene expression. Cumulus-oocyte complexes were matured in vitro in TCM-199 with human menopausal gonadotrophin (control) and in coculture with PLC. IVF was performed with frozen-thawed boar semen in Tris-buffered medium. Presumptive zygotes were cultured in PZM for 7 days. The coculture with PLC significantly increased blastocysts rates. Gene expression changes were measured with a porcine embryo-specific microarray and confirmed by RT-qPCR. The global transcription pattern of embryos developing after PLC coculture exhibited overall downregulation of gene expression. Following global gene expression pattern analysis, genes associated with lipid metabolism, mitochondrial function, endoplasmic reticulum stress, and apoptosis were found downregulated, and genes associated with cell cycle and proliferation were found upregulated in the PLC coculture. Canonical pathway analysis by Ingenuity Pathway revealed that differential expression transcripts were associated with the sirtuin signaling pathway, oxidative phosphorylation pathway, cytokines and ephrin receptor signaling. To conclude, the coculture system of PLC during IVM has a lasting effect on the embryo until the blastocyst stage, modifying gene expression, with a positive effect on embryo development. Our model could be an alternative to replace the conventional maturation medium with gonadotrophins with higher rates of embryo development, a key issue in porcine in vitro embryo production.
Collapse
Affiliation(s)
- G M Teplitz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina
| | - M Shi
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - M A Sirard
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - D M Lombardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Zhu X, Wei Y, Zhan Q, Yan A, Feng J, Liu L, Tang D. CRISPR/Cas9-Mediated Biallelic Knockout of IRX3 Reduces the Production and Survival of Somatic Cell-Cloned Bama Minipigs. Animals (Basel) 2020; 10:E501. [PMID: 32192102 PMCID: PMC7142520 DOI: 10.3390/ani10030501] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bama minipigs are a local pig breed that is unique to China and has a high development and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate have limited its popularity and utilization. Compared with the long breeding cycle and high cost of traditional genetic breeding of pigs, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9)-mediated gene editing can cost-effectively implement targeted mutations in animal genomes, thereby providing a powerful tool for rapid improvement of the economic traits of Bama minipigs. The iroquois homeobox 3 (IRX3) gene has been implicated in human obesity. Mouse experiments have shown that knocking out IRX3 significantly enhances basal metabolism, reduces fat content, and controls body mass and composition. This study aimed to knock out IRX3 using the CRISPR/Cas9 gene editing method to breed Bama minipigs with significantly reduced fat content. First, the CRISPR/Cas9 gene editing method was used to efficiently obtain IRX3-/- cells. Then, the gene-edited cells were used as donor cells to produce surviving IRX3-/- Bama minipigs using somatic cell cloning. The results show that the use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs results in a significant decrease in the average live litter size and a significant increase in the average number of stillbirths. Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly lower, and viability is poor such that all piglets die shortly after birth. Therefore, the preliminary results of this study suggest that IRX3 may have important biological functions in pigs, and IRX3 should not be used as a gene editing target to reduce fat content in Bama minipigs. Moreover, this study shows that knocking out IRX3 does not favor the survival of pigs, and whether targeted regulation of IRX3 in the treatment of human obesity will also induce severe adverse consequences requires further investigation.
Collapse
Affiliation(s)
- Xiangxing Zhu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Yanyan Wei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Qunmei Zhan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Aifen Yan
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| | - Juan Feng
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Lian Liu
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
| | - Dongsheng Tang
- Guangdong Provincial Engineering and Technology Research Center for Gene Editing, School of Medical Engineering, Foshan University, Foshan 528225, China; (A.Y.); (J.F.); (L.L.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China; (Y.W.); (Q.Z.)
| |
Collapse
|
7
|
Wang X, Zhu X, Liang X, Xu H, Liao Y, Lu K, Lu S. Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer. Reprod Domest Anim 2019; 54:1195-1205. [PMID: 31228864 DOI: 10.1111/rda.13493] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
As a natural plant-derived antitoxin, resveratrol possesses several pharmacological activities. This study aimed to evaluate the effects of resveratrol addition on nuclear maturation, oocyte quality during in vitro maturation (IVM) of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer (SCNT). Our experiments showed that the treatment of porcine oocytes with 5 µM resveratrol during IVM resulted in the highest rate of the first polar body extrusion. Treatment of oocytes with resveratrol had no influence on cytoskeletal dynamics, whereas it significantly increased glucose uptake ability compared to the control oocytes. Oocytes matured with 5 μM resveratrol displayed significantly lower intracellular reactive oxygen species (ROS) levels and higher relative mRNA expression levels of the genes encoding such antioxidant enzymes as catalase (CAT) and superoxide dismutase 1 (SOD1). In addition, resveratrol also prevented onset and progression of programmed cell death in porcine oocytes, which was confirmed by significant upregulation of the anti-apoptotic B-cell lymphoma 2 (BCL-2) gene and significant downregulation of the pro-apoptotic BCL2-associated X (BAX) gene. Furthermore, the blastocyst rates and the blastocyst cell numbers in cloned embryos derived from the oocytes that had matured in the presence of 5 μM resveratrol were significantly increased. In conclusion, supplementation of IVM medium with 5 μM resveratrol improves the quality of porcine oocytes by protecting them from oxidative damage and apoptosis, which leads to the production of meiotically matured oocytes exhibiting enhanced developmental potential following SCNT.
Collapse
Affiliation(s)
- Xuefang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China
| | - Xiangxing Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China.,School of Medical Engineering, Foshan University, Foshan, China
| | - Xingwei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China
| | - Huiyan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China
| | - Yuying Liao
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China
| | - Shengsheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi High Education Key Laboratory for Animal Reproduction and Biotechnology, Faculty of Animal Science & Technology, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Song SH, Lee KL, Xu L, Joo MD, Hwang JY, Oh SH, Kong IK. Production of cloned cats using additional complimentary cytoplasm. Anim Reprod Sci 2019; 208:106125. [PMID: 31405460 DOI: 10.1016/j.anireprosci.2019.106125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/28/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is an important technique for producing cloned animals. It, however, is inefficient when there is use of SCNT for cloned animal production. Cytoplasm injection cloning technology (CICT) was developed to overcome the inefficiencies of SCNT use of this purpose. The use of CICT involves additional cytoplasm fusing with enucleated oocytes to restore the cytoplasmic volume, thus improving the in vitro developmental competence and quality of cloned embryos. In this study, there was application of CICT in cats to improve the in vitro developmental competence of cloned embryos, as well as the production of the offspring. The results of this study were that fusion rate of the cloned embryos with use of the CICT method was greater than that with SCNT (80.0 ± 4.8% compared with 67.8 ± 11.3%, respectively), and more blastocysts developed with use of CICT than SCNT (20.0 ± 2.0% compared with 13.5 ± 5.0%, respectively). The 62 cloned embryos that were produced with use of CICT were transferred into five estrous synchronized recipients, and 151 cloned embryos produced using SCNT were transferred to 13 estrous-synchronized recipients. After the embryo transfer, there was birth from surrogate mothers of one live-born kitten that resulted using SCNT compared with three live-born kittens using CICT. The number of CICT-cloned embryos born was greater than that of SCNT-cloned embryos (4.8 ± 2.3% compared with 0.7 ± 1.3%, P < 0.05). These results indicate that the CICT technique can be used to produce cloned kittens, including endangered feline species.
Collapse
Affiliation(s)
- Seok-Hwan Song
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Kyeong-Lim Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Lianguang Xu
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Ji-Yoon Hwang
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea; The King Kong Corp. Ltd., Gyeongsang National University, Jinju, 52828, Gyeongnam Province, Republic of Korea.
| |
Collapse
|
9
|
Samiec M, Romanek J, Lipiński D, Opiela J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim Sci J 2019; 90:1127-1141. [PMID: 31298467 DOI: 10.1111/asj.13260] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
The present study sought to examine whether trichostatin A (TSA)-assisted epigenetic transformation of porcine bone marrow (BM)-derived mesenchymal stem cells (BM-MSCs) affects the transcriptional activities of pluripotency-related genes (Oct4, Nanog, c-Myc, Sox2 and Rex1), multipotent stemness-related gene (Nestin) and anti-apoptotic/anti-senescence-related gene (Survivin). Epigenetically transformed or non-transformed BM-MSCs that had been transcriptionally profiled by qRT-PCR and had been analysed for different stages of apoptosis progression provided a source of nuclear donor cells for the in vitro production of cloned pig embryos. TSA-mediated epigenomic modulation has been found to enhance the multipotency extent, stemness and intracellular anti-ageing properties of porcine BM-MSCs. This has been confirmed by the relative abundances for Nanog, c-Myc Rex1, Sox2 and Survivin mRNAs in TSA-exposed BM-MSCs that turned out to be significantly higher than those of TSA-unexposed BM-MSCs. Additionally, TSA-assisted epigenomic modulation of BM-MSCs did not impact the caspase-8 activity, Bax protein expression and the incidence of TUNEL-positive cells. In conclusion, the considerably elevated quantitative profiles of Sox2, Rex1, c-Myc, Nanog and Survivin mRNA transcripts seem to trigger improved reprogrammability of TSA-treated BM-MSC nuclei in cloned pig embryos that thereby displayed remarkably increased blastocyst formation rates as compared to those noticed for embryos derived from TSA-untreated BM-MSCs.
Collapse
Affiliation(s)
- Marcin Samiec
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Joanna Romanek
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Opiela
- Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Balice n. Kraków, Poland
| |
Collapse
|
10
|
Romar R, Cánovas S, Matás C, Gadea J, Coy P. Pig in vitro fertilization: Where are we and where do we go? Theriogenology 2019; 137:113-121. [PMID: 31182223 DOI: 10.1016/j.theriogenology.2019.05.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The pig is an important livestock animal. Biotechnological interest in this species has increased due to its use, among others, in the generation of transgenic animals for use in biomedicine based on its greater physiological proximity to the human species than other large domestic animals. This development has paralleled an improvement in Assisted Reproduction Techniques (ART) used for this species. However, the ability to generate animals from embryos produced entirely in vitro is still limited and a wide margin for improvement remains. Here we review the procedures, additives, and devices used during pig in vitro fertilization (IVF), focusing on the main points of each step that have offered the best results in terms of increased efficiency of the system. The lack of standardized protocols and consensus on the parameters to be assessed makes it difficult to compare results across different studies, but some conclusions are drawn from the literature. We anticipate that new physiological protocols will advance the field of swine IVF, including induction of prefertilization ZP hardening with oviductal fluid, sperm preparation by swim-up method, increased viscosity through the addition of inert molecules or reproductive biofluids, and the incorporation of 3D devices. Here we also reflect on the need to expand the variables on which the efficiency of pig IVF is based, providing new parameters that should be considered to supply more objective and quantitative assessment of IVF additives and protocols.
Collapse
Affiliation(s)
- Raquel Romar
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain.
| | - Sebastián Cánovas
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Carmen Matás
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Joaquín Gadea
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| | - Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Campus Mare Nostrum, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
11
|
Identifying Biomarkers of Autophagy and Apoptosis in Transfected Nuclear Donor Cells and Transgenic Cloned Pig Embryos. ANNALS OF ANIMAL SCIENCE 2019. [DOI: 10.2478/aoas-2018-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
In this study, we first investigated the effects of 3-methyladenine (3-MA), an autophagy inhibitor, and the inducer – rapamycin (RAPA) on the incidence of programmed cell death (PCD) symptoms during in vitro development of porcine somatic cell nuclear transfer (SCNT)-derived embryos. The expression of autophagy inhibitor mTOR protein was decreased in porcine SCNT blastocysts treated with 3MA. The abundance of the autophagy marker LC3 increased in blastocysts following RAPA treatment. Exposure of porcine SCNT-derived embryos to 3-MA suppressed their developmental abilities to reach the blastocyst stage. No significant difference in the expression pattern of PCD-related proteins was found between non-transfected dermal cell and transfected dermal cell groups. Additionally, the pattern of PCD in SCNT-derived blastocysts generated using SC and TSC was not significantly different, and in terms of porcine SCNT-derived embryo development rates and total blastocyst cell numbers, there was no significant difference between non-transfected cells and transfected cells. In conclusion, regulation of autophagy affected the development of porcine SCNT embryos. Regardless of the type of nuclear donor cells (transfected or non-transfected dermal cells) used for SCNT, there was no difference in the developmental potential and quantitative profiles of autophagy/apoptosis biomarkers between porcine transgenic and non-transgenic cloned embryos. These results led us to conclude that PCD is important for controlling porcine SCNT-derived embryo development, and that transfected dermal cells can be utilized as a source of nuclear donors for the production of transgenic cloned progeny in pigs.
Collapse
|
12
|
Fowler KE, Mandawala AA, Griffin DK, Walling GA, Harvey SC. The production of pig preimplantation embryos in vitro: Current progress and future prospects. Reprod Biol 2018; 18:203-211. [DOI: 10.1016/j.repbio.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 02/07/2023]
|
13
|
Nguyen TV, Wittayarat M, Do LTK, Nguyen TV, Nii M, Namula Z, Kunihara T, Tanihara F, Hirata M, Otoi T. Effects of chlorogenic acid (CGA) supplementation during in vitro maturation culture on the development and quality of porcine embryos with electroporation treatment after in vitro fertilization. Anim Sci J 2018; 89:1207-1213. [PMID: 29806122 DOI: 10.1111/asj.13049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Electroporation is the technique of choice to introduce an exogenous gene into embryos for transgenic animal production. Although this technique is practical and effective, embryonic damage caused by electroporation treatment remains a major problem. This study was conducted to evaluate the optimal culture system for electroporation-treated porcine embryos by supplementation of chlorogenic acid (CGA), a potent antioxidant, during in vitro oocyte maturation. The oocytes were treated with various concentrations of CGA (0, 10, 50, and 100 μmol/L) through the duration of maturation for 44 hr. The treated oocytes were then fertilized, electroporated at 30 V/mm with five 1 msec unipolar pulses, and subsequently cultured in vitro until development into the blastocyst stage. Without electroporation, the treatment with 50 μmol/L CGA had useful effects on the maturation rate of oocytes, the total cell number, and the apoptotic nucleus indices of blastocysts. When the oocytes were electroporated after in vitro fertilization, the treatment with 50 μmol/L CGA supplementation significantly improved the rate of oocytes that developed into blastocysts and reduced the apoptotic nucleus indices (4.7% and 7.6, respectively) compared with those of the untreated group (1.4% and 13.0, respectively). These results suggested that supplementation with 50 μmol/L CGA during maturation improves porcine embryonic development and quality of electroporation-treated embryos.
Collapse
Affiliation(s)
- Thanh-Van Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,Faculty of Veterinary Science, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Thanh Van Nguyen
- Faculty of Veterinary Science, Vietnam National University of Agriculture, Ha Noi, Vietnam
| | - Masahiro Nii
- Tokushima Prefectural Livestock Research Institute, Tokushima, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,College of Agricultural Science, Guangdong Ocean University, Guangdong, China
| | - Toshiki Kunihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
14
|
Zhang YL, Zhang GM, Jia RX, Wan YJ, Yang H, Sun LW, Han L, Wang F. Non-invasive assessment of culture media from goat cloned embryos associated with subjective morphology by gas chromatography - mass spectroscopy-based metabolomic analysis. Anim Sci J 2017; 89:31-41. [PMID: 28833899 DOI: 10.1111/asj.12885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 06/21/2017] [Indexed: 12/29/2022]
Abstract
Pre-implantation embryo metabolism demonstrates distinctive characteristics associated with the development potential of embryos. We aim to determine if metabolic differences correlate with embryo morphology. In this study, gas chromatography - mass spectroscopy (GC-MS)-based metabolomics was used to assess the culture media of goat cloned embryos collected from high-quality (HQ) and low-quality (LQ) groups based on morphology. Expression levels of amino acid transport genes were further examined by quantitative real-time PCR. Results showed that the HQ group presented higher percentages of blastocysts compared with the LQ counterparts (P < 0.05). Metabolic differences were also present between HQ and LQ groups. The culture media of the HQ group showed lower levels of valin, lysine, glutamine, mannose and acetol, and higher levels of glucose, phytosphingosine and phosphate than those of the LQ group. Additionally, expression levels of amino acid transport genes SLC1A5 and SLC3A2 were significantly lower in the HQ group than the LQ group (P < 0.05, respectively). To our knowledge, this is the first report which uses GC-MS to detect metabolic differences in goat cloned embryo culture media. The biochemical profiles may help to select the most in vitro viable embryos.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Guo-Min Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Xin Jia
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Yong-Jie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Ling-Wei Sun
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Le Han
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Nguyen TV, Tanihara F, Do L, Sato Y, Taniguchi M, Takagi M, Van Nguyen T, Otoi T. Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod Domest Anim 2017; 52:969-975. [PMID: 28660662 DOI: 10.1111/rda.13005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/07/2017] [Indexed: 12/19/2022]
Abstract
Chlorogenic acid (CGA) is a quinic acid conjugate of caffeic acid, and a phytochemical found in many fruits and beverages that acts as an antioxidant. The present study investigated the effects of CGA supplementation during in vitro maturation (IVM), on in vitro development of porcine oocytes, to improve the porcine in vitro production (IVP) system. Oocytes were matured either without (control) or with CGA (10, 50, 100 and 200 μM). Subsequently, the matured oocytes were fertilized and cultured in vitro for 7 day. The rates of maturation, fertilization and blastocyst formation of oocytes matured with 50 μM CGA were significantly (p < .05) higher than those of the control oocytes. Hydrogen peroxide (H2 O2 ) is one of the reactive oxygen species and induces DNA damage in porcine oocytes. When oocytes were matured with 1 mM H2 O2 to assess the protective effect of CGA, 50 μM CGA supplementation improved the maturation rate and the proportion of DNA-fragmented nuclei in oocytes compared with control oocytes matured without CGA. Moreover, when oocytes were matured with either 50 μM CGA (control) or caffeic acid (10, 50 and 100 μM), the rates of maturation, fertilization and the blastocyst formation of oocytes matured with 50 μM CGA were similar to those of oocytes matured with 10 and 50 μM caffeic acid. Our results suggest that CGA has comparable effects to caffeic acid, and IVM with 50 μM CGA is particularly beneficial to IVP of porcine embryos and protects oocytes from DNA damage induced by oxidative stress. Supplementation of CGA to the maturation medium has a potential to improve porcine IVP system.
Collapse
Affiliation(s)
- T-V Nguyen
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - F Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Ltk Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Y Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| | - M Taniguchi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Takagi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - T Van Nguyen
- Faculty of Veterinary Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - T Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
16
|
Guo Y, Li H, Wang Y, Yan X, Sheng X, Chang D, Qi X, Wang X, Liu Y, Li J, Ni H. Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP). Mol Biol Rep 2016; 44:159-168. [PMID: 27975165 DOI: 10.1007/s11033-016-4094-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/03/2016] [Indexed: 11/24/2022]
Abstract
Somatic cell nuclear transfer (SCNT) is frequently used to produce transgenic cloned livestock, but it is still associated with low success rates. To our knowledge, we are the first to report successful production of transgenic cattle that overexpress bovine adipocyte-type fatty acid binding proteins (A-FABPs) with the aid of SCNT. Intragenomic integration of additional A-FABP gene copies has been found to be positively correlated with the intramuscular fat content in different farm livestock species. First, we optimized the cloning parameters to produce bovine embryos integrated with A-FABP by SCNT, such as applied voltage field strength and pulse duration for electrofusion, morphology and size of donor cells, and number of donor cells passages. Then, bovine fibroblast cells from Qinchuan cattle were transfected with A-FABP and used as donor cells for SCNT. Hybrids of Simmental and Luxi local cattle were selected as the recipient females for A-FABP transgenic SCNT-derived embryos. The results showed that a field strength of 2.5 kV/cm with two 10-μs duration electrical pulses was ideal for electrofusion, and 4-6th generation circular smooth type donor cells with diameters of 15-25 μm were optimal for producing transgenic bovine embryos by SCNT, and resulted in higher fusion (80%), cleavage (73%), and blastocyst (27%) rates. In addition, we obtained two transgenic cloned calves that expressed additional bovine A-FABP gene copies, as detected by PCR-amplified cDNA sequencing. We proposed a set of optimal protocols to produce transgenic SCNT-derived cattle with intragenomic integration of ectopic A-FABP-inherited exon sequences.
Collapse
Affiliation(s)
- Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Hejuan Li
- College of Landscape Design and Forestry, Beijing University of Agriculture, Beijing, 102206, China
| | - Ying Wang
- Jiahe Hospital of Reproduction Health and Sterility, Qingdao, 266071, China
| | - Xingrong Yan
- College of Life Science, Northwest University, Xi'an, 710069, China
| | - Xihui Sheng
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Di Chang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaolong Qi
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiangguo Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yunhai Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Junya Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hemin Ni
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
17
|
Huang J, Zhang H, Yao J, Qin G, Wang F, Wang X, Luo A, Zheng Q, Cao C, Zhao J. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei. Reproduction 2016; 151:39-49. [PMID: 26604326 DOI: 10.1530/rep-15-0460] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, P<0.05) and in vivo (cloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression.
Collapse
Affiliation(s)
- Jiaojiao Huang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Hongyong Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jing Yao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Guosong Qin
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Xianlong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Ailing Luo
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Chunwei Cao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, ChinaUniversity of Chinese Academy of SciencesBeijing 100049, ChinaCollege of Life SciencesCapital Normal University, 105 Xisanhuan North Road, Haidian District, Beijing 100048, China
| |
Collapse
|
18
|
Huang Y, Li Z, Wang A, Han X, Song Y, Yuan L, Li T, Wang B, Lai L, Ouyang H, Pang D. Chimerism in piglets developed from aggregated cloned embryos. FEBS Open Bio 2016; 6:285-302. [PMID: 27239442 PMCID: PMC4821359 DOI: 10.1002/2211-5463.12037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/18/2015] [Accepted: 01/25/2016] [Indexed: 12/02/2022] Open
Abstract
Porcine chimeras are valuable in the study of pluripotency, embryogenesis and development. It would be meaningful to generate chimeric piglets from somatic cell nuclear transfer embryos. In this study, two cell lines expressing the fluorescent markers enhanced green fluorescent protein (EGFP) and tdTomato were used as donor cells to produce reconstructed embryos. Chimeric embryos were generated by aggregating two EGFP‐cell derived embryos with two tdTomato‐cell derived embryos at the 4‐cell stage, and embryo transfer was performed when the aggregated embryos developed into blastocysts. Live porcine chimeras were successfully born and chimerism was observed by their skin color, gene integration, microsatellite loci composition and fluorescent protein expression. The chimeric piglets were largely composed of EGFP‐expressing cells, and this phenomenon was possibly due to the hyper‐methylation of the promoter of the tdTomato gene. In addition, the expression levels of tumorigenicity‐related genes were altered after tdTomato transfection in bladder cancer cells. The results show that chimeric pigs can be produced by aggregating cloned embryos and that the developmental capability of the cloned embryo in the subsequent chimeric development could be affected by the growth characteristics of its donor cell.
Collapse
Affiliation(s)
- Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China; Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Anfeng Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Xiaolei Han
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Lin Yuan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Tianye Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Bing Wang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| | - Daxin Pang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering College of Animal Sciences Jilin University Changchun China
| |
Collapse
|
19
|
Xie B, Qin Z, Liu S, Nong S, Ma Q, Chen B, Liu M, Pan T, Liao DJ. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos. PLoS One 2016; 11:e0153189. [PMID: 27058238 PMCID: PMC4825983 DOI: 10.1371/journal.pone.0153189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/24/2016] [Indexed: 11/30/2022] Open
Abstract
The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis.
Collapse
Affiliation(s)
- Bingkun Xie
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
- * E-mail:
| | - Zhaoxian Qin
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Shuai Liu
- Hebei Research Institute for Family Planning, Shijiazhang, Hebei, P. R. China
| | - Suqun Nong
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Qingyan Ma
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Baojian Chen
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Mingjun Liu
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - Tianbiao Pan
- Guangxi Key Laboratory of Livestock Genetic Improvement, Guangxi Institute of Animal Sciences, Nanning, Guangxi, P. R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| |
Collapse
|
20
|
Zaniboni A, Spinaci M, Zannoni A, Bernardini C, Forni M, Bacci ML. X and Y chromosome-bearing spermatozoa are equally able to uptake and internalize exogenous DNA by sperm-mediated gene transfer in swine. Res Vet Sci 2016; 104:1-3. [PMID: 26850529 DOI: 10.1016/j.rvsc.2015.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 10/27/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
Since proteomic differences between male X/Y chromosome-bearing gametes have recently been described, a question has been raised: could these differences be responsible for different behavior between X and Y chromosome-bearing spermatozoa during the binding and internalization of exogenous DNA in the swine species? In order to investigate this hypothesis, our group studied the process of the uptake and internalization of exogenous DNA in X and Y chromosome-bearing sperm sub-populations. No significant differences were found between sperm types in both the uptake and internalization of exogenous DNA. The quantity of internalized exogenous DNA was significantly lower than that of the uptaken DNA. In conclusion, our results showed that X and Y chromosomes-bearing spermatozoa have the same binding capacity and internalization of DNA, and the proteomic differences between them do not seem to interfere with these complex processes.
Collapse
Affiliation(s)
- Andrea Zaniboni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences - DIMEVET, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy.
| |
Collapse
|
21
|
Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. BIOMED RESEARCH INTERNATIONAL 2015; 2015:814686. [PMID: 25866813 PMCID: PMC4381569 DOI: 10.1155/2015/814686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The current research was conducted to explore the in vitro developmental outcome and cytological/molecular quality of porcine nuclear-transferred (NT) embryos reconstituted with adult bone marrow-derived mesenchymal stem cells (ABM-MSCs) that were epigenetically transformed by treatment with nonspecific inhibitor of histone deacetylases, known as trichostatin A (TSA). The cytological quality of cloned blastocysts was assessed by estimation of the total cells number (TCN) and apoptotic index. Their molecular quality was evaluated by real-time PCR-mediated quantification of gene transcripts for pluripotency- and multipotent stemness-related markers (Oct4, Nanog, and Nestin). The morula and blastocyst formation rates of NT embryos derived from ABM-MSCs undergoing TSA treatment were significantly higher than in the TSA-unexposed group. Moreover, the NT blastocysts generated using TSA-treated ABM-MSCs exhibited significantly higher TCN and increased pluripotency extent measured with relative abundance of Oct4 and Nanog mRNAs as compared to the TSA-untreated group. Altogether, the improvements in morula/blastocyst yields and quality of cloned pig embryos seem to arise from enhanced abilities for promotion of correct epigenetic reprogramming of TSA-exposed ABM-MSC nuclei in a cytoplasm of reconstructed oocytes. To our knowledge, we are the first to report the successful production of mammalian high-quality NT blastocysts using TSA-dependent epigenomic modulation of ABM-MSCs.
Collapse
|
22
|
Su J, Wang Y, Zhang L, Wang B, Liu J, Luo Y, Guo Z, Quan F, Zhang Y. Oocyte-secreted factors in oocyte maturation media enhance subsequent development of bovine cloned embryos. Mol Reprod Dev 2014; 81:341-9. [PMID: 24420374 DOI: 10.1002/mrd.22302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Successful in vitro maturation (IVM) and oocyte quality both affect the subsequent development of cloned embryos derived from somatic-cell nuclear transfer (SCNT). Developmental competence is usually lower in oocytes matured in vitro compared with those that matured in vivo, possibly due to insufficient levels of oocyte-secreted factors (OSFs) and disrupted oocyte-cumulus communication. This study investigated the effects of OSFs secreted by denuded oocytes (DOs) during IVM on the subsequent developmental competence of cloned bovine embryos. Cumulus-oocyte complexes (COCs) from antral follicles of slaughtered-cow ovaries collected from an abattoir were divided into four groups: COCs co-cultured with and without DOs in maturation media used for SCNT, as well as COCs co-cultured with and without DOs in maturation media used for in vitro fertilization (IVF). Based on the developmental competence and embryo quality of bovine embryos generated from these four groups, we found that co-culturing the COCs with DOs enhanced the in vitro development of IVF and cloned bovine embryos, and potentially generated more high-quality cloned blastocysts that possessed locus-specific histone modifications at levels similar to in vitro-fertilized embryos. These results strongly suggest that co-culturing COCs with DOs enhances subsequent developmental competence of cloned bovine embryo.
Collapse
Affiliation(s)
- Jianmin Su
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, PR China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang M, Gui T, Li Y, Wei C, Zhan N, Chen Z, Zhang Y, Liu Y, Jia Q, Ding J, Zhang X, Zhang Y. Establishment and Characterization of a Huanghuai White Goat Mammary Gland Epithelial Cell Line Derived During the Gestational Period. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ajava.2013.713.722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Tian Y, Li W, Wang L, Liu C, Lin J, Zhang X, Zhang N, He S, Huang J, Jia B, Liu M. Expression of 2A peptide mediated tri-fluorescent protein genes were regulated by epigenetics in transgenic sheep. Biochem Biophys Res Commun 2013; 434:681-7. [PMID: 23603255 DOI: 10.1016/j.bbrc.2013.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 10/27/2022]
Abstract
A number of gene therapy applications and basic research would benefit from vectors expressing multiple genes. In this study, we constructed 2A peptide based tricistronic lentiviral vector and generated transgenic lambs by injecting lentivirus carrying the tricistronic vector into perivitelline space of zygotes. Of 7 lambs born, 2 lambs (#6 and #7) carried the transgene. However, no fluorescent proteins were identified in transgenic sheep. To investigate why the transgene was silenced in transgenic sheep, we analyzed the methylation status of transgene. The methylation level of CMV promoter was 76.25% in #6, and 64.7% in #7. In the coding region of three fluorescent protein genes, methylation levels were extremely high, with the average level of 98.3% in #6 and 98.4% in #7 respectively. Furthermore, the ratio of GFP(+) cells were increased significantly when the fibroblasts derived from the transgenic sheep were treated with 5-azaC and/ or TSA. Our results showed that 2A peptide based tricistronic construct was subjected to hypermethylation in transgenic sheep. Moreover, the silencing could be relieved by treating with methytransferase inhibitor and/or deacetylase inhibitor.
Collapse
Affiliation(s)
- Yongzhi Tian
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|