1
|
Balboni A, Niculae M, Di Vito S, Urbani L, Terrusi A, Muresan C, Battilani M. The detection of canine parvovirus type 2c of Asian origin in dogs in Romania evidenced its progressive worldwide diffusion. BMC Vet Res 2021; 17:206. [PMID: 34090429 PMCID: PMC8180150 DOI: 10.1186/s12917-021-02918-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Canine parvovirus (CPV) is one of the most important pathogens of dogs. Despite vaccination, CPV infections are still ubiquitous in dogs, and the three antigenic variants 2a, 2b and 2c are variously distributed in the canine population worldwide. To date, no information is available on CPV variants circulating in some European countries. The aim of this study was to genetically characterise the CPV detected in ten dogs with clinical signs of acute gastroenteritis in Romania. The presence of Carnivore protoparvovirus 1 DNA was investigated in faecal samples using an end-point PCR targeting the complete VP2 gene and positive amplicons were sequenced and analysed. Results All ten dogs with acute gastroenteritis tested positive to Carnivore protoparvovirus 1 DNA in faecal samples. The identified viruses belonged to CPV-2c type, showed identical sequences of the VP2 gene and were characterised by distinctive amino acid residues in the deduced VP2 protein: 5-glicine (5Gly), 267-tirosine (267Tyr), 324-isoleucine (324Ile) and 370-arginine (370Arg). These distinctive amino acid residues have already been reported in CPV-2c widespread in Asia and occasionally detected in Italy and Nigeria. Conclusions Since CPV-2c with VP2 amino acid residues 5Gly, 267Tyr, 324Ile and 370Arg were never reported before 2013, it can be assumed that this virus is progressively expanding its spread in the world dog population. This study adds new data about the presence of this new virus in Europe and underline worrying questions about its potential impact on the health of the canine population. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02918-6.
Collapse
Affiliation(s)
- Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Mihaela Niculae
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Serena Di Vito
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Lorenza Urbani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Alessia Terrusi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy
| | - Cosmin Muresan
- Department of Clinical Sciences, Division of Infectious Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mara Battilani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano dell'Emilia, Bologna, Italy.
| |
Collapse
|
2
|
Diagnostics and genotyping of Canine parvovirus type 2 (CPV-2) from disease cases in south-eastern Poland. ACTA VET-BEOGRAD 2019. [DOI: 10.2478/acve-2019-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
Canine parvovirus type 2 is one of the most common causes of death among puppies. Despite preventive vaccination, the disease continues to be diagnosed. The aim of the study was to provide a molecular characterization of CPV-2 isolates found in southeastern Poland. Genetic CPV-2 material was isolated from the blood (n=10) and feces (n=50) of infected dogs. The presence of CPV-2 was confirmed by amplification of sequences coding both VP1 and VP2 protein. The products of the PCR reaction with primers amplifying VP2 protein were sequenced and used for genotyping. Bioinformatics analysis of the sequenced PCR product was performed to determine the phylogenetic relationships with variants recorded in the public databases. Based on the analysis of polymorphism in the nucleotide sequence 7 nucleotide variants were detected and assigned into four amino acid groups. Representatives of three groups contained asparagine at amino acid position 426 of the VP2 protein, which is characteristic of CPV-2a. The variant from the fourth group belonged to type CPV-2b. CPV-2a is the dominant antigenic type of CPV-2 in Poland. The pathogen’s high degree of polymorphism is manifested not only by the presence of numerous variants within the type, but also by the presence of representatives of type CPV-2b. Further studies of the molecular epidemiology of CPV-2 are necessary to optimize the effectiveness of preventive measures.
Collapse
|
3
|
A comparative molecular characterization of AMDV strains isolated from cases of clinical and subclinical infection. Virus Genes 2018; 54:561-569. [PMID: 29845505 DOI: 10.1007/s11262-018-1576-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/23/2018] [Indexed: 10/16/2022]
Abstract
The Aleutian mink disease virus (AMDV) is one of the most serious threats to modern mink breeding. The disease can have various courses, from progressive to subclinical infections. The objective of the study was to provide a comparative molecular characterization of isolates of AMDV from farms with a clinical and subclinical course of the disease. The qPCR analysis showed a difference of two orders of magnitude between the number of copies of the viral DNA on the farm with the clinical course of the disease (105) and the farm with the subclinical course (103). The sequencing results confirm a high level of homogeneity within each farm and variation between them. The phylogenetic analysis indicates that the variants belonging to different farms are closely related and occupy different branches of the same clade. The in silico analysis of the effect of differences in the sequence encoding the VP2 protein between the farms revealed no effect of the polymorphism on its functionality. The close phylogenetic relationship between the isolates from the two farms, the synonymous nature of most of the polymorphisms and the potentially minor effect on the functionality of the protein indicate that the differences in the clinical picture may be due not only to polymorphisms in the nucleotide and amino acid sequences, but also to the stage of infection on the farm and the degree of stabilization of the pathogen-host relationship.
Collapse
|
4
|
Grecco S, Iraola G, Decaro N, Alfieri A, Alfieri A, Gallo Calderón M, da Silva AP, Name D, Aldaz J, Calleros L, Marandino A, Tomás G, Maya L, Francia L, Panzera Y, Pérez R. Inter- and intracontinental migrations and local differentiation have shaped the contemporary epidemiological landscape of canine parvovirus in South America. Virus Evol 2018; 4:vey011. [PMID: 29657837 PMCID: PMC5892152 DOI: 10.1093/ve/vey011] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Canine parvovirus (CPV) is a fast-evolving single-stranded DNA virus that causes one of the most significant infectious diseases of dogs. Although the virus dispersed over long distances in the past, current populations are considered to be spatially confined and with only a few instances of migration between specific localities. It is unclear whether these dynamics occur in South America where global studies have not been performed. The aim of this study is to analyze the patterns of genetic variability in South American CPV populations and explore their evolutionary relationships with global strains. Genomic sequences of sixty-three strains from South America and Europe were generated and analyzed using a phylodynamic approach. All the obtained strains belong to the CPV-2a lineage and associate with global strains in four monophyletic groups or clades. European and South American strains from all the countries here analyzed are representative of a widely distributed clade (Eur-I) that emerged in Southern Europe during 1990–98 to later spread to South America in the early 2000s. The emergence and spread of the Eur-I clade were correlated with a significant rise in the CPV effective population size in Europe and South America. The Asia-I clade includes strains from Asia and Uruguay. This clade originated in Asia during the late 1980s and evolved locally before spreading to South America during 2009–10. The third clade (Eur-II) comprises strains from Italy, Brazil, and Ecuador. This clade appears in South America as a consequence of an early introduction from Italy to Ecuador in the middle 1980s and has experienced extensive local genetic differentiation. Some strains from Argentina, Uruguay, and Brazil constitute an exclusive South American clade (SA-I) that emerged in Argentina in the 1990s. These results indicate that the current epidemiological scenario is a consequence of inter- and intracontinental migrations of strains with different geographic and temporal origins that set the conditions for competition and local differentiation of CPV populations. The coexistence and interaction of highly divergent strains are the main responsible for the drastic epidemiological changes observed in South America in the last two decades. This highlights the threat of invasion from external sources and the importance of whole-genome resolution to robustly infer the origin and spread of new CPV variants. From a taxonomic standpoint, the findings herein show that the classification system that uses a single amino acid to identify variants (2a, 2b, and 2c) within the CPV-2a lineage does not reflect phylogenetic relationships and is not suitable to analyze CPV evolution. In this regard, the identification of clades or sublineages within circulating CPV strains is the first step towards a genetic and evolutionary classification of the virus.
Collapse
Affiliation(s)
- Sofía Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gregorio Iraola
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.,Unidad de Bioinformática, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Strada Provinciale per Casamassima Km 3, 70010 Valenzano, Bari, Italy
| | - Alice Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, PO Box 6001, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Paraná 86051-990, Brazil
| | - Amauri Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, PO Box 6001, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Paraná 86051-990, Brazil
| | - Marina Gallo Calderón
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, CONICET, Saladillo 2468, C1440FFX Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana Paula da Silva
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, PO Box 6001, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Paraná 86051-990, Brazil
| | - Daniela Name
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.,Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, PO Box 6001, Rodovia Celso Garcia Cid, PR 445 Km 380, Londrina, Paraná 86051-990, Brazil
| | - Jaime Aldaz
- Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Estatal de Bolívar, Av. Ernesto Che Guevara s/n. Guaranda, Ecuador
| | - Lucía Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Gonzalo Tomás
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Leticia Maya
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Lourdes Francia
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Ruben Pérez
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
5
|
Cavalli A, Desario C, Kusi I, Mari V, Lorusso E, Cirone F, Kumbe I, Colaianni ML, Buonavoglia D, Decaro N. Detection and genetic characterization of Canine parvovirus and Canine coronavirus strains circulating in district of Tirana in Albania. J Vet Diagn Invest 2018; 26:563-566. [PMID: 24928599 DOI: 10.1177/1040638714538965] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An epidemiological survey for Canine parvovirus 2 (CPV-2) and Canine coronavirus (CCoV) was conducted in Albania. A total of 57 fecal samples were collected from diarrheic dogs in the District of Tirana during 2011-2013. The molecular assays detected 53 and 31 CPV- and CCoV-positive specimens, respectively, with mixed CPV-CCoV infections diagnosed in 28 dogs. The most frequently detected CPV type was 2a, whereas IIa was the predominant CCoV subtype. A better comprehension of the CPV-CCoV epidemiology in eastern European countries will help to assess the most appropriate vaccination strategies to prevent disease due to infections with these widespread agents of acute gastroenteritis in the dog.
Collapse
Affiliation(s)
- Alessandra Cavalli
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Costantina Desario
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Ilir Kusi
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Viviana Mari
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Eleonora Lorusso
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Francesco Cirone
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Ilirjan Kumbe
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Maria Loredana Colaianni
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Domenico Buonavoglia
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| | - Nicola Decaro
- Department of Veterinary Medicine of Bari, University of Bari, Valenzano, Bari, Italy (Cavalli, Desario, Mari, Lorusso, Cirone, Buonavoglia, Decaro).,Faculty of Veterinary Medicine, Agricultural University, Tirana, Albania (Kusi, Kumbe).,Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, Foggia, Italy (Colaianni)
| |
Collapse
|
6
|
Miranda C, Thompson G. Canine parvovirus: the worldwide occurrence of antigenic variants. J Gen Virol 2016; 97:2043-2057. [PMID: 27389721 DOI: 10.1099/jgv.0.000540] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The most important enteric virus infecting canids is canine parvovirus type 2 (CPV-2). CPV is the aetiologic agent of a contagious disease, mainly characterized by clinical gastroenteritis signs in younger dogs. CPV-2 emerged as a new virus in the late 1970s, which could infect domestic dogs, and became distributed in the global dog population within 2 years. A few years later, the virus's original type was replaced by a new genetic and antigenic variant, called CPV-2a. Around 1984 and 2000, virus variants with the single change to Asp or Glu in the VP2 residue 426 were detected (sometimes termed CPV-2b and -2c). The genetic and antigenic changes in the variants have also been correlated with changes in their host range; in particular, in the ability to replicate in cats and also host range differences in canine and other tissue culture cells. CPV-2 variants have been circulating among wild carnivores and have been well-documented in several countries around the world. Here, we have reviewed and summarized the current information about the worldwide distribution and evolution of CPV-2 variants since they emerged, as well as the host ranges they are associated with.
Collapse
Affiliation(s)
- Carla Miranda
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.,Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Gertrude Thompson
- Department of Veterinary Clinics, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.,Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBio, Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
7
|
Kaur G, Chandra M, Dwivedi PN, Sharma NS. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis. Vet World 2015; 8:52-6. [PMID: 27046996 PMCID: PMC4777811 DOI: 10.14202/vetworld.2015.52-56] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022] Open
Abstract
Aim: The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. Materials and Methods: A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Results: Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. Conclusion: It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - P N Dwivedi
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N S Sharma
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Lin CN, Chien CH, Chiou MT, Chueh LL, Hung MY, Hsu HS. Genetic characterization of type 2a canine parvoviruses from Taiwan reveals the emergence of an Ile324 mutation in VP2. Virol J 2014; 11:39. [PMID: 24568207 PMCID: PMC3944821 DOI: 10.1186/1743-422x-11-39] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/19/2014] [Indexed: 11/29/2022] Open
Abstract
Background Canine parvovirus 2 (CPV 2) is a major infectious cause of mortality in puppies. The characteristic symptom of CPV 2 disease is intestinal hemorrhage with severe bloody diarrhea. Soon after CPV was first recognized in the late 1970s, the original virus, CPV 2, was replaced in the canine population by strains carrying minor antigenic variants (termed 2a, 2b, and 2c) of the VP2 gene that could be distinguished using monoclonal antibodies and molecular analyses. Here, we provide an updated molecular characterization of the CPV 2 circulating in Taiwan. Methods In this study, 28 isolates of CPV 2 from 144 dogs with suspected CPV infection were obtained from northern, central, and southern Taiwan from 2008 to 2012 and screened by PCR. The 28 isolates were sequenced, and a phylogenetic analysis of the VP2 gene was performed. Results Of the 28 Taiwanese CPV 2 isolates, 15 were identified as new CPV 2a, and 13 were identified as new CPV 2b. Compared to the reference CPV 2a, all 15 of the CPV 2a sequences collected in this study contain an Ile324 mutation caused by a TAT to ATT mutation at nucleotides 970–972 of the VP2 gene. Conclusion Our VP2 sequence data revealed that both types are currently prevalent CPV 2 field strains circulating in Taiwan, and a unique Ile324 VP2 mutation was found in our Taiwanese CPV 2a isolates and recent Asian isolates. CPV 2c was not observed in this study.
Collapse
Affiliation(s)
- Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | | | | | | | | | | |
Collapse
|