1
|
Ashraf D, Shaaban MI, Hassan R, El-Aziz AMA. Polidocanol inhibits Enterococcus faecalis virulence factors by targeting fsr quorum sensing system. BMC Microbiol 2024; 24:411. [PMID: 39415105 PMCID: PMC11481293 DOI: 10.1186/s12866-024-03548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The wide spread of antimicrobial resistance in Enterococcus faecalis is a critical global concern, leading to increasingly limited treatment options. The fsr quorum sensing (QS) plays a critical role in the pathogenicity of E. faecalis, allowing bacteria to coordinate gene expression and regulate many virulence factors. Therefore, fsr QS of E. faecalis represents a potential therapeutic target that provides an effective strategy to treat antibiotic-resistant infections induced by E. faecalis. METHODS In this study, distribution of different virulence factors including, gelatinase, protease, cell surface hydrophobicity and biofilm formation in sixty clinical isolates of Enterococcus faecalis was investigated. Sixty-six compounds were tested for their activity against fsr QS. The minimal inhibitory concentration of the tested compounds was evaluated using the microbroth dilution method. The effect of sub-inhibitory concentrations of the tested compounds on fsr QS was investigated using the gelatinase assay method. Additionally, the effect of potential QS inhibitor on the virulence factors was estimated. Quantitative real-time PCR was used to investigate the effect of the potential inhibitor on fsr QS related genes (fsrB-fsrC) and (gelE-sprE) and virulence associated genes including, asa1 and epbA. RESULTS The assessment of polidocanol activity against the fsr QS system was demonstrated by studying its effect on gelatinase production in E. faecalis clinical isolates. Sub-lethal concentrations of polidocanol showed a significant reduction in gelatinase and protease production by 54% to 70% and 64% to 85%, respectively. Additionally, it significantly reduced biofilm formation (P < 0.01) and interrupted mature biofilm at concentrations of ½, 1 × and 2 × MIC. Furthermore, polidocanol significantly decreased cell surface hydrophobicity (P < 0.01). Polidocanol at ½ MIC showed a significant reduction in the expression of QS genes including fsrB, fsrC, gelE and sprE by 57% to 97% without affecting bacterial viability. Moreover, it reduced the expression of virulence associated genes (asa1 and epbA) (P < 0.01). CONCLUSION Polidocanol appears to be a promising option for treating of E. faecalis infections by targeting the fsr QS system and exhibiting anti-biofilm activity.
Collapse
Affiliation(s)
- Dina Ashraf
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Ramadan Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Abeer M Abd El-Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
3
|
Kadhim E, Amin B, Amin B. Anti-Quorum Sensing Effect of Salvadora Persica Against Enterococcus faecalis (ATCC 29212). Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2204280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction:
Quorum Sensing (QS) is a mechanism many bacteria use to manage their cooperative activities and physiological functions. The Fsr system in Enterococcus faecalis (ATCC 29,212) is an example of quorum sensing with a cell density-dependent two-component regulatory system mechanism. Several publications have shown that the Fsr system and proteases independently contribute to E. faecalis pathogenicity in various infection models.
Objectives:
There is currently no published research to determine the exact molecular ability of Salvadora persica on quorum-sensing genes. Therefore, this study aimed to determine the plant extracts that inhibit the expression of the quorum-sensing gene (FsrC).
Methods:
Different fractions of Salvadora persica were obtained using different solvents, including standard hexane, chloroform, ethyl acetate, n-butanol, ethyl alcohol, and water which are expressed as fractions 1,2,3,4,5 and 6, respectively. Antibacterial activity assay of different plant extracts (S. persica) was determined by minimum inhibitory concentration (MIC). Finally, the relative expression of the quorum-sensing (QS) gene was evaluated using a One-step quantitative RT-PCR PrimeScript™ RT-PCR Kit.
Results:
All fractions of S. persica showed antimicrobial activity. However, ethyl acetate- S. persica inhibited the growth of E. faecalis (ATCC 29,212) at the lowest concentration, which was 20mg/ml and the highest concentration inhibited the growth of E. faecalis (ATCC 29,212) was 60mg/ml (chloroform- S. persica). Furthermore, the highest change fold value of (4.99) was recorded in treated E. faecalis (ATCC 29,212) with fraction 1 (hexane).
Conclusion:
Overall, S. persica showed antimicrobial activity against E. faecalis (ATCC 29,212). However, more studies are required to investigate the effect of different plant extracts on quorum-sensing genes of Enterococcus faecalis.
Collapse
|
4
|
El-Seedi HR, Khalifa SAM, Yosri N, Khatib A, Chen L, Saeed A, Efferth T, Verpoorte R. Plants mentioned in the Islamic Scriptures (Holy Qur'ân and Ahadith): Traditional uses and medicinal importance in contemporary times. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112007. [PMID: 31170516 DOI: 10.1016/j.jep.2019.112007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Over the past thousand years, Islamic physicians have collected cultural, philosophical, sociological and historical backgrounds for understanding diseases and medications. The Prophet Mohammed (Peace Be Upon Him (PBUH) said: "There is no disease that Allah has created, except that Allah also has created its cure." Therefore, Islamic scholars are encouraged to explore and use both traditional and modern forms of medicine. AIM OF THE STUDY (1) To identify some of the medicinal plants mentioned in the Holy Qur'ân and Ahadith textbooks of the period 700-1500 AD; (2) to compare them with presently used traditional medicines; (3) to evaluate their value based on modern research; and (4) to investigate the contributions of Islamic scholars to the development of the scientific branches, particularly medicine. MATERIALS AND METHODS A literature search was performed relating to 12 medicinal plants mentioned in the Holy Qur'ân and Ahadith using textbooks, Al-Azhar scholars, published articles, the plant list website (http://www.theplantlist.org/), the medicinal plant names services website (http://mpns.kew.org/mpns-portal/) and web databases (PubMed, Science Direct, and Google Scholar). RESULTS AND DISCUSSION The Islamic Golden Age was a step towards modern medicine, with unique insights and multi-disciplinary aspects. Traditional Islamic Medicine has had a significant impact on the development of various medical, scientific and educational activities. Innumerable Muslim and non-Muslim physicians have built on the strong foundation of Traditional Islamic Medicine by translating the described natural remedies and effects. The influences of different ancient cultures on the traditional uses of natural products were also documented in Islamic Scriptures in the last part of the second millennium. The divine teachings of Islam combine natural and practical healing and incorporate inherited science and technology. CONCLUSION In this review, we discuss Traditional Islamic Medicine with reference to both medical recommendations mentioned in the Holy Qur'ân and Prophetic Traditional Medicine (al-Tibb al-Nabawi). Although the molecular mechanisms and functions of some of the listed medicinal plants and their derivatives have been intensively studied, some traditional remedies have yet to be translated into clinical applications.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden; Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina, 42541, Saudi Arabia; Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt.
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-Gren Institute, SE-106 91, Stockholm, Sweden; Clinical Research Centre, Karolinska University Hospital, Huddinge, Sweden
| | - Nermeen Yosri
- Department of Chemistry, Faculty of Science, Menoufia University, 32512, Shebin El-Kom, Egypt
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia, Kuantan, 25200, Pahang, Malaysia
| | - Lei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Aamer Saeed
- Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Germany
| | - Rob Verpoorte
- Natural Products Laboratory, IBL, Leiden University, PO Box 9505, 2300RA, Leiden, The Netherlands
| |
Collapse
|
5
|
Phytochemical composition, anti-biofilm and anti-quorum sensing potential of fruit, stem and leaves of Salvadora persica L. methanolic extracts. Microb Pathog 2017; 109:169-176. [DOI: 10.1016/j.micpath.2017.05.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 05/20/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022]
|
6
|
Cytotoxicity of probiotics from Philippine commercial dairy products on cancer cells and the effect on expression of cfos and cjun early apoptotic-promoting genes and Interleukin-1 β and Tumor Necrosis Factor-α proinflammatory cytokine genes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:491740. [PMID: 25276792 PMCID: PMC4170743 DOI: 10.1155/2014/491740] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 07/26/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
This study determined cytotoxicity of probiotic Lactobacillus spp. from Philippine dairy products on cancer cells and normal fibroblasts and their effects on expression of early apoptotic-promoting cfos, cjun and proinflammatory cytokine IL-1β, TNF-α genes. Cultures were from Yakult, Bear Brand Probiotic Drink, Nido3+ Powdered Milk. Filter-sterilized supernatants from cultures of Lactobacillus spp. were evaluated for cytotoxicity to colon cancer cells (HT-29 and HCT116), leukemia cells (THP-1), and normal human dermal fibroblasts (HDFn) using PrestoBlue. Bleomycin was the positive control. Absolute quantification of transcript levels was conducted using qRT-PCR. Cytotoxicity index profiles on HDFn, THP-1 of all probiotic supernatants and negative controls suggest nontoxicity to the cells when compared to bleomycin, whereas all probiotic supernatants were found to be cytotoxic to HT-29 and HCT-116 colon cancer cell lines. Expression of cfos, cjun transcripts was significantly upregulated in HT-29 and HCT116 cells treated with probiotic supernatants compared to untreated baseline levels (P < 0.05). Expression of IL-1β and TNF-α by lipopolysaccharide-treated macrophages was significantly downregulated in cells with probiotic supernatants compared to those exposed to MRS medium (P < 0.05). Results provide strong support for the role of Lactobacillus spp. studied in anticancer therapy and in prevention of inflammation that may act as precursor to carcinogenesis.
Collapse
|
7
|
Amir Alireza RG, Afsaneh R, Seied Hosein MS, Siamak Y, Afshin K, Zeinab K, Mahvash MJ, Amir Reza R. Inhibitory activity of Salvadora persica extracts against oral bacterial strains associated with periodontitis: An in-vitro study. J Oral Biol Craniofac Res 2014; 4:19-23. [PMID: 25737914 DOI: 10.1016/j.jobcr.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/03/2014] [Indexed: 11/16/2022] Open
Abstract
AIMS The use of natural plant extracts in pharmacology, medicine and dental hygiene has found a growing interest in modern scientific research. Salvadora persica is a natural tree whose fibrous branches have been approved by the World Health Organization for oral hygiene. Periodontitis is a highly prevalent adult gingival disease that leads to bone destruction and connective tissue attachment loss. The aim of this research was assessment the antimicrobial activities of methanolic extract of Salvadora persica (miswak) on isolated strains from the oral fluid. METHODS In practical section, 50 female university students (21.4 ± 1 year) participated in the study. Based on examination by a periodontist, they were grouped into (Group I, n = 21) and (Group II, n = 29) i.e. with and without periodontitis respectively. Their un-stimulated saliva samples were obtained in sterile tubes. While three bacterial genera, Staphylococcus, Streptococcus and Lactobacillus were identified in all subjects, Enterococcus and Escherichia were only detected in Group I. RESULTS A statistically significant difference in colonization levels between the two groups was observed. The effect of methanolic extract of S. persica against oral bacterial strains isolated from saliva was investigated using agar disc diffusion and microdilution methods. Although methanolic extract of S. persica was effective on growth inhibition of all strains, it was significantly more effective on Gram positive bacteria than Gram negative ones. CONCLUSIONS Effective substances present in S. persica extracts, exhibit a broad range of antibacterial activity and affect almost all bacterial species regardless of the Gram-staining nature.
Collapse
Affiliation(s)
| | - Rezaei Afsaneh
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Yaghoobee Siamak
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Khorsand Afshin
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Kadkhoda Zeinab
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Moosavi Jazi Mahvash
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| | - Rokn Amir Reza
- Department of Periodontology, Dental School, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|