1
|
Lee J, Lee S, Huh SJ, Kang BJ, Shin H. Directed Regeneration of Osteochondral Tissue by Hierarchical Assembly of Spatially Organized Composite Spheroids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103525. [PMID: 34806336 PMCID: PMC8787388 DOI: 10.1002/advs.202103525] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Indexed: 05/11/2023]
Abstract
The use of engineered scaffolds or stem cells is investigated widely in the repair of injured musculoskeletal tissue. However, the combined regeneration of hierarchical osteochondral tissue remains a challenge due to delamination between cartilage and subchondral bone or difficulty in spatial control over differentiation of transplanted stem cells. Here, two types of composite spheroids are prepared using adipose-derived stem cells (hADSCs) and nanofibers coated with either transforming growth factor-β3 or bone morphogenetic growth factor-2 for chondrogenesis or osteogenesis, respectively. Each type of spheroid is then cultured within a 3D-printed microchamber in a spatially arranged manner to recapitulate the bilayer structure of osteochondral tissue. The presence of inductive factors regionally modulates in vitro chondrogenic or osteogenic differentiation of hADSCs within the biphasic construct without dedifferentiation. Furthermore, hADSCs from each spheroid proliferate and sprout and successfully connect the two layers mimicking the osteochondral interface without apertures. In vivo transplantation of the biphasic construct onto a femoral trochlear groove defect in rabbit knee joint results in 21.2 ± 2.8% subchondral bone volume/total volume and a cartilage score of 25.0 ± 3.7. The present approach can be an effective therapeutic platform to engineer complex tissue.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- BK21 FOUR Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
2
|
Lee J, Seok JM, Huh SJ, Byun HY, Lee SM, Park SA, Shin H. 3D printed micro-chambers carrying stem cell spheroids and pro-proliferative growth factors for bone tissue regeneration. Biofabrication 2020; 13. [PMID: 33086206 DOI: 10.1088/1758-5090/abc39c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Three-dimensional (3D)-printed scaffolds have proved to be effective tools for delivering growth factors and cells in bone-tissue engineering. However, delivering spheroids that enhance cellular function remains challenging because the spheroids tend to suffer from low viability, which limits bone regenerationin vivo. Here, we describe a 3D-printed polycaprolactone micro-chamber that can deliver human adipose-derived stem cell spheroids. Anin vitroculture of cells from spheroids in the micro-chamber exhibited greater viability and proliferation compared with cells cultured without the chamber. We coated the surface of the chamber with 500 ng of platelet-derived growth factors (PDGF), and immobilized 50 ng of bone morphogenetic protein 2 (BMP-2) on fragmented fibers, which were incorporated within the spheroids as a new platform for a dual-growth-factor delivery system. The PDGF detached from the chamber within 8 h and the remains were retained on the surface of chamber while the BMP-2 was entrapped by the spheroid. In vitro osteogenic differentiation of the cells from the spheroids in the micro-chamber with dual growth factors enhanced alkaline phosphatase and collagen type 1A expression by factors of 126.7 ± 19.6 and 89.7 ± 0.3, respectively, compared with expression in a micro-chamber with no growth factors. In vivo transplantation of the chambers with dual growth factors into mouse calvarial defects resulted in a 77.0 ± 15.9% of regenerated bone area, while the chamber without growth factors and a defect-only group achieved 7.6 ± 3.9% and 5.0 ± 1.9% of regenerated bone areas, respectively. These findings indicate that a spheroid-loaded micro-chamber supplied with dual growth factors can serve as an effective protein-delivery platform that increases stem-cell functioning and bone regeneration.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Ji Min Seok
- Korea Institute of Machinery and Materials, Daejeon, Korea (the Republic of)
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Ha Yeon Byun
- Hanyang University, Seoul, Korea (the Republic of)
| | - Sang Min Lee
- Department of Bioengineering, Hanyang University, Seoul, Korea (the Republic of)
| | - Su A Park
- Korea Institute of Machinery and Materials, Daejeon, 34103, Korea (the Republic of)
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea (the Republic of)
| |
Collapse
|
3
|
Toshimitsu T, Kajiya H, Yasunaga M, Maeshiba M, Fujisaki S, Miyaguchi N, Yamaguchi M, Maeda H, Kojima H, Ohno J. Susceptibility of the Wnt/β-catenin Pathway Accelerates Osteogenic Differentiation of Human Periodontal Ligament Stem Cell Spheroids. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Takuya Toshimitsu
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
- Research Center for Regenerative Medicine, Fukuoka Dental College
| | - Hiroshi Kajiya
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Cellular Physiology, Department of Physiological Science and Molecular Biology, Fukuoka Dental College
| | - Madoka Yasunaga
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Orthodontics, Department of Oral Growth and Development, Fukuoka Dental College
| | - Munehisa Maeshiba
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Removable Prosthodontics, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Seiichi Fujisaki
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Naoyuki Miyaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Division of Oral Implantology, Department of Oral Rehabilitation, Fukuoka Dental College
| | - Masahiro Yamaguchi
- Research Center for Regenerative Medicine, Fukuoka Dental College
- Section of Geriatric Dentistry, Department of General Dentistry, Fukuoka Dental College
| | - Hidefumi Maeda
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University
| | - Hiroshi Kojima
- Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | - Jun Ohno
- Research Center for Regenerative Medicine, Fukuoka Dental College
| |
Collapse
|