1
|
Canet-Vintró M, Rodríguez-Sanz J, López-de-Celis C, Campañá-Arnal E, Hidalgo-Garcia C, Pérez-Bellmunt A. Effects of focal vibration on changes in sports performance in amateur athletes: A randomized clinical trial. J Orthop Res 2024; 42:2106-2115. [PMID: 38598304 DOI: 10.1002/jor.25857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/06/2024] [Accepted: 03/30/2024] [Indexed: 04/12/2024]
Abstract
The aim of this study was to evaluate the effectiveness of a focal vibration protocol added to an activation protocol with active muscle contractions and to see what repercussions it has on sprint, countermovement jump (CMJ), and lower limb isometric strength. A double-blind randomized clinical trial was conducted in the Functional Anatomy Laboratory and the sample consisted of 70 athletes. The main outcome measures were knee extension force, CMJ, sprint, and surface electromyography. Repeated-measures analysis of variance revealed significant improvements. They were found in the within-group analysis for the Experimental Group in the isometric extension force (p < 0.001; η2 = 0.368), CMJ (p < 0.001; η2 = 0.301) and 30 m sprint (p < 0.001; η2 = 0.376). In the electromyography, there are changes in the Sham Group in all muscles, in CMJ and Sprint tests, and no differences in the Experimental Group, except for the RF muscle. In the between-group analysis, statistically significant differences were found only in favor of the Experimental Group in CMJ (p = 0.017; η2 = 0.81) and 30 m sprint (p < 0.001; η2 = 0.152). These results confirm a significant improvement in the sprint, CMJ performance, and quadriceps strength, after a focal vibration protocol, added to a muscle active contraction, compared to a focal vibration sham protocol. Therefore, our results suggest that the focal vibration can be a very useful tool in sports involving high-powered actions.
Collapse
Affiliation(s)
- Max Canet-Vintró
- Faculty of Medicine and Health Sciences, Basic Sciences and Physiotherapy Department, Universitat Internacional de Catalunya, Barcelona, Spain
- ACTIUM Anatomy Group, Barcelona, Spain
| | - Jacobo Rodríguez-Sanz
- Faculty of Medicine and Health Sciences, Basic Sciences and Physiotherapy Department, Universitat Internacional de Catalunya, Barcelona, Spain
- ACTIUM Anatomy Group, Barcelona, Spain
| | - Carlos López-de-Celis
- Faculty of Medicine and Health Sciences, Basic Sciences and Physiotherapy Department, Universitat Internacional de Catalunya, Barcelona, Spain
- ACTIUM Anatomy Group, Barcelona, Spain
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain
| | - Enric Campañá-Arnal
- Faculty of Medicine and Health Sciences, Basic Sciences and Physiotherapy Department, Universitat Internacional de Catalunya, Barcelona, Spain
- ACTIUM Anatomy Group, Barcelona, Spain
| | - César Hidalgo-Garcia
- Faculty of Health Sciences, Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
| | - Albert Pérez-Bellmunt
- Faculty of Medicine and Health Sciences, Basic Sciences and Physiotherapy Department, Universitat Internacional de Catalunya, Barcelona, Spain
- ACTIUM Anatomy Group, Barcelona, Spain
| |
Collapse
|
2
|
Morino C, Middleton S, Op't Eynde J, Dimbath E, Kait J, Luck J, Bass C. Primary Creep Characterization in Porcine Lumbar Spine Subject to Repeated Loading. Ann Biomed Eng 2024:10.1007/s10439-024-03557-2. [PMID: 38951421 DOI: 10.1007/s10439-024-03557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
Low back pain (LBP) is a common medical condition worldwide, though the etiology of injuries causing most LBP is unknown. Flexion and repeated compression increase lumbar injury risk, yet the complex viscoelastic behavior of the lumbar spine has not been characterized under this loading scheme. Characterizing the non-injurious primary creep behavior in the lumbar spine is necessary for understanding the biomechanical response preceding injury. Fifteen porcine lumbar spinal units were loaded in repeated flexion-compression with peak compressive stresses ranging from 1.41 to 4.68 MPa. Applied loading simulated real loading exposures experienced by high-speed watercraft occupants. The strain response in the primary creep region was modeled for all tests using a generalized Kelvin-Voigt model. A quasilinear viscoelastic (QLV) approach was used to separate time-dependent (creep) and stress-dependent (elastic) responses. Optimizations between the models and experimental data determined creep time constants, creep coefficients, and elastic constants associated with this tissue under repeated flexion-compression loading. Average R2 for all fifteen models was 0.997. Creep time constants optimized across all fifteen models were 24 s and 580 s and contributed to 20 ± 3% and 30 ± 3% of the overall strain response, respectively. The non-transient behavior contributed to 50 ± 0% of the overall response. Elastic behavior for this porcine population had an average standard deviation of 24.5% strain across the applied stress range. The presented primary creep characterization provides the response precursor to injurious behavior in the lumbar spine. Results from this study can further inform lumbar injury prediction and kinematic models.
Collapse
Affiliation(s)
- Concetta Morino
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Engineering Systems Inc., Charlotte, North Carolina, USA.
| | - Shea Middleton
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joost Op't Eynde
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Elizabeth Dimbath
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jason Kait
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Jason Luck
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Cameron Bass
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
3
|
Li P, Fu R, Yang X, Wang K, Chen H. Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to whole-body vibration under a compressive follower preload. Comput Methods Biomech Biomed Engin 2024:1-10. [PMID: 38532635 DOI: 10.1080/10255842.2024.2333925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE To analyze the dynamic response of the lumbosacral vertebrae structure of a scoliosis spine and a kyphosis spine under whole-body vibration. METHODS Typical Lenke4 (kyphosis) and Lenke3 (scoliosis) spinal columns were used as research objects. A finite element model of the lumbosacral vertebrae segment was established and validated based on CT scanning images. Modal, harmonic response, and transient dynamic analyses were performed on the lumbar-sacral scoliosis model using the finite element software abaqus. RESULTS The first four resonance frequencies of kyphosis spine extracted from modal analysis were 0.86, 1.45, 8.51, and 55.71 Hz. The first four resonance frequencies of scoliosis spine extracted from modal analysis were 0.76, 1.45, 10.51, and 63.82 Hz. The scoliosis spine had the maximum resonance amplitude in the transverse direction, while the kyphosis spine had the maximum resonance amplitude in the anteroposterior direction. The dynamic response in transient analysis exhibited periodic response over time at all levels. CONCLUSION The scoliosis and kyphosis deformity of the spine significantly complicates the vibration response in the scoliosis and kyphosis areas at the top of the spine. Scoliosis and kyphosis patients are more likely to experience vibrational spinal diseases than healthy people. Besides, applying vertical cyclic loads on a malformed spine may cause further rotation of scoliosis and kyphosis deformities.
Collapse
Affiliation(s)
- Pengju Li
- School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Rongchang Fu
- School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Xiaozheng Yang
- School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Kun Wang
- School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| | - Huiran Chen
- School of Mechanical Engineering, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
4
|
Pier T, Misuraca JS, Mandt MJ. Vibratory Impact of 3 Different Ambulance Suspension Systems on the Simulated Neonate and Health Care Provider During Normal Driving Conditions. Air Med J 2024; 43:133-139. [PMID: 38490776 DOI: 10.1016/j.amj.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 03/17/2024]
Abstract
OBJECTIVE Patients and health care providers experience varying degrees of vibration during interfacility ground transport. The impact of vibration on term and preterm neonates may result in physiologic instability and increased risk of intracranial hemorrhage, whereas the impact on health care providers has been shown to include an increase in perceived and physiologic stress levels and may contribute to chronic back and neck pain. This study aimed to evaluate 3 common ambulance suspension systems and the corresponding vibratory impact produced during typical interfacility driving conditions on adult caregiver and neonatal patient mannequins. METHODS Type 3 ambulances with air, liquid, and traditional suspensions were evaluated using various driving tests to simulate typical road conditions. Vibrations were measured using triaxial accelerometers placed on the chassis, upon the head of a seated caregiver mannequin in the ambulance bench seat, and the head of a neonatal mannequin supine and secured in an isolette. Data analysis included the average vibration frequency, root mean square values, and maximum vibration amplitudes. RESULTS The results showed that the supine neonatal mannequin experienced the highest vibration frequency and amplitude in the vertical (x) direction, whereas the adult caregiver mannequin experienced higher vibration frequencies in both parallel (y) and lateral (z) directions and the highest vibration amplitude in the y direction. The liquid suspension system consistently demonstrated the lowest vibration levels in all driving conditions and directions, whereas traditional suspension had the highest values. CONCLUSION This study provides important insights into the vibrations incurred by simulated neonatal patients and health care providers during ambulance transport. The directional vibration frequency and amplitude differ between a neonatal mannequin and an adult mannequin when placed in typical positions with typical restraints during varied ambulance driving conditions. In all directional movements and driving conditions, a liquid suspension system decreases vibration frequency and amplitude more than air or traditional systems. The live patient and caregiver impact of these results should be further investigated.
Collapse
Affiliation(s)
- Trevor Pier
- Denver Department of Bioengineering, University of Colorado Denver, The Center for Bioengineering, Aurora, CO
| | - Justin S Misuraca
- Department of Nursing, Children's Hospital Colorado Flight Program, Aurora, CO
| | - Maria J Mandt
- Department of Pediatrics, Section of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO.
| |
Collapse
|
5
|
Jia S, Lin L, Yang H, Xie J, Liu Z, Zhang T, Fan J, Han L. Biodynamic responses of adolescent idiopathic scoliosis exposed to vibration. Med Biol Eng Comput 2023; 61:271-284. [PMID: 36385615 DOI: 10.1007/s11517-022-02710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Patients with adolescent idiopathic scoliosis suffer severe health issues. The unclear dynamic biomechanical characteristics of scoliosis were needed to be explored to improve the prevention and treatment in clinics. Validated 3D finite element (FE) models of thoracolumbosacral spine (T1-S1) both with and without scoliosis were developed from computed tomography (CT) images. Modal and harmonic analyses were performed to investigate the biomechanical responses of the spinal models to vibration. Resonant frequencies of the scoliotic model were lower than those of the model without scoliosis. Peak amplitudes occurred at vibrational frequencies close to the modal resonant frequencies, which caused the deformed thoracic segment in scoliosis suffered the maximum amplitude. The stresses on vertebrae and intervertebral discs in the scoliotic model derived from vibrations were significantly larger than those in the non-scoliosis model, and heterogeneously concentrated on the scoliotic thoracic segment. In conclusion, the scoliotic spine in the patients with Lenke 1BN scoliosis is more prone to injuries than the non-scoliotic spine while vibrating. Scoliotic thoracic segments in patients with Lenke 1BN scoliosis were the more vulnerable and sensitive component of the T1-S1 spine to vibration than lumbar spines. This study suggested that vibration would impair the scoliotic spines, and patients with Lenke 1BN scoliosis should avoid exposure to vibration, especially the low-frequency vibration.
Collapse
Affiliation(s)
- Shaowei Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Liying Lin
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Hufei Yang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Junde Xie
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Zefeng Liu
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Tianyou Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Jie Fan
- School of Foreign Languages, Hebei University of Technology, Tianjin, China
| | - Li Han
- School of Medical Imaging, Tianjin Medical University, Tianjin, China. .,Medical College, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Li X, Fu R, Wu H, Sun Y. Dynamic effects of eifferent nail placement strategies on LenkeC scoliosis. Biomed Mater Eng 2022; 34:225-234. [DOI: 10.3233/bme-221409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Although the internal fixation technique for scoliosis is effective, there is a great risk of nail placement in actual operation. OBJECTIVE: To compare the effects of three different nail placement strategies on LenkeC patients with scoliosis under cyclic loading. METHODS: Firstly, the finite element model was established by using CT scanning images and X-ray images of patients with LenkeC scoliosis. Secondly, the validity of the model was verified. Finally, the harmonic response analysis and transient dynamic analysis were carried out. Results: The results showed that the maximum amplitude of each vertebral body appeared in the Z direction at the third natural frequency and the amplitudes of each corresponding vertebral body were very close under three kinds of nail placement. Under different nail placement methods, the uneven distribution of nails would make the model produce obvious stress concentration, but the principal stress of vertebral body and nail rod was far lower than its own yield strength. This showed that under the axial cyclic load, the vertebral bodies of scoliosis tended to have larger impact in Z direction. From the point of view of dynamics, it was feasible to reduce a certain number of nails in operation. CONCLUSION: This paper revealed that it was feasible to reduce a certain number of nails during surgery.
Collapse
Affiliation(s)
| | | | - Hui Wu
- , Xinjiang University, , , China
| | | |
Collapse
|
7
|
Macedo LG, Noguchi KS, de Oliveira LA, Bakaa N, Di Pelino S, Battié MC. The association between whole body vibration exposure and spine degeneration on imaging: A systematic review. J Back Musculoskelet Rehabil 2022; 35:691-700. [PMID: 34744062 DOI: 10.3233/bmr-181350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Low frequency vibrations from motorized vehicles and heavy equipment have been associated with musculoskeletal disorders. Spine degeneration on diagnostic imaging provides direct and objective measures of the possible effects of such exposures on the spine. OBJECTIVE The objective of this systematic review was to evaluate the association of exposure to whole-body vibration (WBV) with spine degeneration on imaging. METHODS We conducted electronic searches in MEDLINE, CINAHL, EMBASE, and Web of Science to July 2021. Two reviewers independently screened search results, assessed quality, and extracted data. Studies evaluating the exposure to WBV and lumbar spine degeneration on imaging were included. RESULTS Fifteen studies (16 manuscripts) were included. Seven studies including a meta-demonstrated moderate quality evidence of no association between WBV and disc degeneration. There was also moderate quality evidence of no association between WBV and disc height narrowing and osteophytes. Overall, there was low level evidence of no association between WBV and other degenerations findings. CONCLUSIONS There was moderate to low quality evidence suggesting no association between WBV exposures with spine degeneration on imaging. The results of this study currently do not support assertion that motorized vehicle and WBV exposure accelerates degeneration and causes structural damage to the spine.
Collapse
Affiliation(s)
- Luciana Gazzi Macedo
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kenneth S Noguchi
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Lisandra A de Oliveira
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Nora Bakaa
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Stephanie Di Pelino
- School of Rehabilitation Science, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michele C Battié
- School of Physical Therapy, Faculty of Health Sciences, and Western Bone and Joint Institute, Western Ontario University, London, ON, Canada
| |
Collapse
|
8
|
Hanumegowda PK, Gnanasekaran S. Risk factors and prevalence of work-related musculoskeletal disorders in metropolitan bus drivers: An assessment of whole body and hand-arm transmitted vibration. Work 2022; 71:951-973. [PMID: 35253662 DOI: 10.3233/wor-205007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Metropolitan bus drivers have higher prevalence of work-related musculoskeletal disorders (WMSDs) due to their nature of work and working environment. OBJECTIVE To identify the prevalence of WMSDs and associated risk factors and to conduct real-time testing to evaluate Whole Body Vibration (WBV) and Hand-Arm Vibration (HAV) in buses based on the ISO standards to assess the vibrations levels at different speeds. METHODS Participants in this study were 370 full-time male bus drivers from the north and south zones of 13 depots of Bengaluru Metropolitan Transport Corporation (BMTC), Bengaluru, south India. Information regarding WMSDs symptoms during the previous 7 days and 12 months were collected by Modified Nordic Musculoskeletal Questionnaire (MNMQ). WBV and HAV testing was performed and vibration levels were compared with ISO-2631-1 (1997) and ISO-5349-1-2001 standards. It was found that 68.7% of participants reported WMSDs. RESULTS Several individuals and work-related factors were found to be statistically significant with WMSDs. From the Gini impurity measure, vibration and road types (Asphalt pavement and Rough road) were considered as vital risk factors associated with WMSDs. CONCLUSION From the WBV and HAV evaluations, it was found that for buses on asphalt pavement at > 60 km/h, the vibration level was higher compared to a lower speed. The vibration level exceeded the Exposure Action Value (EAV) on rough roads at all speeds (20km/h, 40km/h and 60km/h) and in several situations considered based on assumptions the vibration level exceeded the Exposure Limiting Value (ELV).
Collapse
Affiliation(s)
| | - Sakthivel Gnanasekaran
- School of Mechanical Engineering, VIT Chennai, India.,Centre for Automation, VIT Chennai, India
| |
Collapse
|
9
|
Patterson F, Miralami R, Tansey KE, Prabhu RK, Priddy LB. Deleterious effects of whole-body vibration on the spine: A review of in vivo, ex vivo, and in vitro models. Animal Model Exp Med 2021; 4:77-86. [PMID: 34179716 PMCID: PMC8212824 DOI: 10.1002/ame2.12163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Occupational exposure to whole-body vibration is associated with the development of musculoskeletal, neurological, and other ailments. Low back pain and other spine disorders are prevalent among those exposed to whole-body vibration in occupational and military settings. Although standards for limiting exposure to whole-body vibration have been in place for decades, there is a lack of understanding of whole-body vibration-associated risks among safety and healthcare professionals. Consequently, disorders associated with whole-body vibration exposure remain prevalent in the workforce and military. The relationship between whole-body vibration and low back pain in humans has been established largely through cohort studies, for which vibration inputs that lead to symptoms are rarely, if ever, quantified. This gap in knowledge highlights the need for the development of relevant in vivo, ex vivo, and in vitro models to study such pathologies. The parameters of vibrational stimuli (eg, frequency and direction) play critical roles in such pathologies, but the specific cause-and-effect relationships between whole-body vibration and spinal pathologies remain mostly unknown. This paper provides a summary of whole-body vibration parameters; reviews in vivo, ex vivo, and in vitro models for spinal pathologies resulting from whole-body vibration; and offers suggestions to address the gaps in translating injury biomechanics data to inform clinical practice.
Collapse
Affiliation(s)
- Folly Patterson
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Raheleh Miralami
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Keith E. Tansey
- Department of Neurosurgery and NeurobiologyUniversity of Mississippi Medical CenterJacksonMSUSA
- Center for Neuroscience and Neurological RecoveryMethodist Rehabilitation CenterJacksonMSUSA
- Spinal Cord Injury Medicine and Research ServicesG.V. (Sonny) Montgomery VA Medical CenterJacksonMSUSA
| | - Raj K. Prabhu
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| | - Lauren B. Priddy
- Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateMSUSA
- Center for Advanced Vehicular SystemsMississippi State UniversityStarkvilleMSUSA
| |
Collapse
|
10
|
Bovenzi M, Schust M. A prospective cohort study of low-back outcomes and alternative measures of cumulative external and internal vibration load on the lumbar spine of professional drivers. Scand J Work Environ Health 2021; 47:277-286. [PMID: 33522594 PMCID: PMC8091068 DOI: 10.5271/sjweh.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: The aim of this study was to compare the performance of alternative measures of cumulative lifetime vibration dose to predict the occurrence of low-back pain (LBP) outcomes in a cohort of 537 professional drivers investigated at baseline and over a two-year follow up period. Methods: The exposure data obtained in the EU VIBRISKS project were used to calculate alternative measures of either acceleration- (external) or force- (internal) based lifetime vibration doses. Vibration was measured in representative samples of machines and vehicles used by the drivers. Internal lumbar forces were calculated by means of anatomy-, posture-, and anthropometry-based finite element models. The relations of LBP outcomes to alternative measures of lifetime vibration doses were assessed by the generalized estimating equations method. Results: Metrics of cumulative vibration exposure constructed with either acceleration- or force-based methods were significantly associated with the occurrence of LBP outcomes. A measure of model fitting suggested that force-based doses were better predictors of LBP outcomes than acceleration-based doses. Models with force root-mean-square doses provided a better fit to LBP outcomes than those with force-peak doses. Conclusions: Measures of internal lumbar forces were better predictors of LBP outcomes than measures of external vibration acceleration although the exposure metrics constructed with the acceleration-based method have the advantage of greater simplicity compared to the force-based method. The differences between the models with force-based doses suggest that the cumulative health effects on the lumbar spine might depend on the integrated resulting total force over the entire exposure time rather than primarily on the force peaks.
Collapse
Affiliation(s)
- Massimo Bovenzi
- Clinical Unit of Occupational Medicine, Department of Medical Sciences, University of Trieste, Centro Tumori, Via della Pietà 19, I-34129 Trieste, Italy.
| | | |
Collapse
|
11
|
Contemori S, Dieni CV, Sullivan JA, Ferraresi A, Occhigrossi C, Calabrese F, Pettorossi VE, Biscarini A, Panichi R. Sensory inflow manipulation induces learning-like phenomena in motor behavior. Eur J Appl Physiol 2020; 120:811-828. [PMID: 32062702 DOI: 10.1007/s00421-020-04320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Perceptual and goal-directed behaviors may be improved by repetitive sensory stimulations without practice-based training. Focal muscle vibration (f-MV) modulating the spatiotemporal properties of proprioceptive inflow is well-suited to investigate the effectiveness of sensory stimulation in influencing motor outcomes. Thus, in this study, we verified whether optimized f-MV stimulation patterns might affect motor control of upper limb movements. METHODS To answer this question, we vibrated the slightly tonically contracted anterior deltoid (AD), posterior deltoid (PD), and pectoralis major muscles in different combinations in forty healthy subjects at a frequency of 100 Hz for 10 min in single or repetitive administrations. We evaluated the vibration effect immediately after f-MV application on upper limb targeted movements tasks, and one week later. We assessed target accuracy, movement mean and peak speed, and normalized Jerk using a 3D optoelectronic motion capture system. Besides, we evaluated AD and PD activity during the tasks using wireless electromyography. RESULTS We found that f-MV may induce increases (p < 0.05) in movement accuracy, mean speed and smoothness, and changes (p < 0.05) in the electromyographic activity. The main effects of f-MV occurred overtime after repetitive vibration of the AD and PD muscles. CONCLUSION Thus, in healthy subjects, optimized f-MV stimulation patterns might over time affect the motor control of the upper limb movement. This finding implies that f-MV may improve the individual's ability to produce expected motor outcomes and suggests that it may be used to boost motor skills and learning during training and to support functional recovery in rehabilitation.
Collapse
Affiliation(s)
- Samuele Contemori
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Australia
| | - Cristina V Dieni
- Department of Ophthalmology, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | | | - Aldo Ferraresi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Chiara Occhigrossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Francesco Calabrese
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Vito E Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
12
|
ARSLAN YUNUSZIYA. EXPERIMENTAL ASSESSMENT OF LUMPED-PARAMETER HUMAN BODY MODELS EXPOSED TO WHOLE BODY VIBRATION. J MECH MED BIOL 2015. [DOI: 10.1142/s0219519415500232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole body vibration (WBV) is uncontrolled vibrations in occupational settings such as vehicle driving or hand tool operating. Chronic occupational WBV exposure may cause many health problems such as fatigue, lower back pain, spinal degenerations, vision problems and so on. In order to simulate and observe the adverse effects of WBV on the human body, many lumped-parameter human body models were proposed. The objective of this study is to provide quantified assessments of human body biodynamic models which were designed to characterize the response of real human body exposed to WBV. To do so, direct measurements of vibration accelerations obtained from different segments of human body and vehicle seat were carried out during riding on roads with different unevenness levels. Recorded experimental acceleration data were compared with those obtained from simulations of different human body models. Root mean square difference and correlation coefficient values were calculated between theoretical and experimental accelerations for a quantitative assessment of the existing models. According to the comparison results, biodynamic model proposed by Boileau and Rakheja [Boileau P-É, Rakheja S, Whole-body vertical biodynamic response characteristics of the seated vehicle driver: Measurement and model development, Int J Ind Ergonom22:449–472, 1998] showed the best correlation with the experimental acceleration data.
Collapse
Affiliation(s)
- YUNUS ZIYA ARSLAN
- Department of Mechanical Engineering, Faculty of Engineering Istanbul University, Avcilar, Istanbul, Turkey 34320, Turkey
| |
Collapse
|
13
|
Whole-body vibration and occupational physical performance: a review. Int Arch Occup Environ Health 2015; 89:181-97. [DOI: 10.1007/s00420-015-1062-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/18/2015] [Indexed: 12/23/2022]
|
14
|
Eger T, Thompson A, Leduc M, Krajnak K, Goggins K, Godwin A, House R. Vibration induced white-feet: overview and field study of vibration exposure and reported symptoms in workers. Work 2015; 47:101-10. [PMID: 24004754 DOI: 10.3233/wor-131692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Workers who stand on platforms or equipment that vibrate are exposed to foot-transmitted vibration (FTV). Exposure to FTV can lead to vibration white feet/toes resulting in blanching of the toes, and tingling and numbness in the feet and toes. OBJECTIVES The objectives are 1) to review the current state of knowledge of the health risks associated with foot-transmitted vibration (FTV), and 2) to identify the characteristics of FTV and discuss the associated risk of vibration-induced injury. PARTICIPANTS Workers who operated locomotives (n=3), bolting platforms (n=10), jumbo drills (n=7), raise drilling platforms (n=4), and crushers (n=3), participated. METHODS A tri-axial accelerometer was used to measure FTV in accordance with ISO 2631-1 guidelines. Frequency-weighted root-mean-square acceleration and the dominant frequency are reported. Participants were also asked to report pain/ache/discomfort in the hands and/or feet. RESULTS Reports of pain/discomfort/ache were highest in raise platform workers and jumbo drill operators who were exposed to FTV in the 40 Hz and 28 Hz range respectively. Reports of discomfort/ache/pain were lowest in the locomotive and crusher operators who were exposed to FTV below 10 Hz. These findings are consistent with animal studies that have shown vascular and neural damage in exposed appendages occurs at frequencies above 40 Hz. CONCLUSIONS Operators exposed to FTV at 40 Hz appear to be at greater risk of experiencing vibration induced injury. Future research is required to document the characteristics of FTV and epidemiological evidence is required to link exposure with injury.
Collapse
Affiliation(s)
- Tammy Eger
- School of Human Kinetics, Laurentian University, Sudbury, ON, Canada Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, ON, Canada
| | - Aaron Thompson
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, ON, Canada Department of Occupational and Environmental Health, St. Michael's Hospital, Toronto, ON, Canada
| | - Mallorie Leduc
- School of Human Kinetics, Laurentian University, Sudbury, ON, Canada
| | - Kristine Krajnak
- Engineering and Controls Technology Branch, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Katie Goggins
- School of Human Kinetics, Laurentian University, Sudbury, ON, Canada
| | - Alison Godwin
- School of Human Kinetics, Laurentian University, Sudbury, ON, Canada Centre for Research in Occupational Safety and Health, Laurentian University, Sudbury, ON, Canada
| | - Ron House
- Department of Medicine, Division of Occupational Medicine, University of Toronto, Toronto, ON, Canada Department of Occupational and Environmental Health, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Johanning E. Whole-body vibration-related health disorders in occupational medicine--an international comparison. ERGONOMICS 2015; 58:1239-1252. [PMID: 25655650 DOI: 10.1080/00140139.2015.1005170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Workers with whole-body vibration (WBV) exposure are likely to report non-specific health complaints. Health and safety providers may not recognise such occupational injuries and may be unfamiliar with appropriate exposure assessment and prevention. This is a review of clinical studies, medical evidence, differential diagnostic evaluation protocols, surveillance programmes, national and international standards, and interventions recommendations utilising PubMed and other online resources. In summary, several studies show a clear trend: with increasing duration and intensity of occupational WBV exposure, primarily musculoskeletal or neurological disorders of the spine occur. Other organ damage has also been reported. In some European Union countries, spinal injury caused by WBV is recognised as an occupational disease and may be compensable. The WBV-related injury diagnosis includes a review of the work history, exposure assessment and differential diagnostic evaluation. WBV health surveillance should assess health status of WBV-exposed workers and address preventive measures. PRACTITIONER SUMMARY Workers with whole-body vibration exposure report a variety of physical disorders. Health and safety providers may not recognise such injuries, or may be unfamiliar with exposure assessment and prevention. This review addresses health issues, exposure assessment and an international review of compensation criteria, trends and prevention efforts.
Collapse
Affiliation(s)
- Eckardt Johanning
- a Center for Family and Community Medicine , Columbia University , New York , NY , USA
| |
Collapse
|
16
|
Amonette WE, Boyle M, Psarakis MB, Barker J, Dupler TL, Ott SD. Neurocognitive responses to a single session of static squats with whole body vibration. J Strength Cond Res 2014; 29:96-100. [PMID: 25536489 DOI: 10.1519/jsc.0b013e31829b26ce] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purpose of this study was to determine if the head accelerations using a common whole body vibration (WBV) exercise protocol acutely reduced neurocognition in healthy subjects. Second, we investigated differential responses to WBV plates with 2 different delivery mechanisms: vertical and rotational vibrations. Twelve healthy subjects (N = 12) volunteered and completed a baseline (BASE) neurocognitive assessment: the Immediate Postconcussion Assessment and Cognitive Test (ImPACT). Subjects then participated in 3 randomized exercise sessions separated by no more than 2 weeks. The exercise sessions consisted of five 2-minute sets of static hip-width stance squats, with the knees positioned at a 45° angle of flexion. The squats were performed with no vibration (control [CON]), with a vertically vibrating plate (vertical vibration [VV]), and with a rotational vibrating plate (rotational vibration [RV]) set to 30 Hz with 4 mm of peak-to-peak displacement. The ImPACT assessments were completed immediately after each exercise session and the composite score for 5 cognitive domains was analyzed: verbal memory, visual memory, visual motor speed, reaction time, and impulse control. Verbal memory scores were unaffected by exercise with or without vibration (p = 0.40). Likewise, visual memory was not different (p = 0.14) after CON, VV, or RV. Significant differences were detected for visual motor speed (p = 0.006); VV was elevated compared with BASE (p = 0.01). There were no significant differences (p = 0.26) in reaction time or impulse control (p = 0.16) after exercise with or without vibration. In healthy individuals, 10 minutes of 30 Hz, 4-mm peak-to-peak displacement vibration exposure with a 45° angle of knee flexion did not negatively affect neurocognition.
Collapse
Affiliation(s)
- William E Amonette
- 1Human Performance Laboratory, Department of Clinical, Health, and Applied Sciences, University of Houston-Clear Lake, Houston, Texas; 2Department of Orthopedics, University of Texas Health Science Center, Houston, Texas; and 3Memorial Hermann Ironman Sports Medicine Institute, Houston, Texas
| | | | | | | | | | | |
Collapse
|
17
|
Schust M, Menzel G, Hofmann J, Forta NG, Pinto I, Hinz B, Bovenzi M. Measures of internal lumbar load in professional drivers - the use of a whole-body finite-element model for the evaluation of adverse health effects of multi-axis vibration. ERGONOMICS 2014; 58:1191-1206. [PMID: 25290764 DOI: 10.1080/00140139.2014.960009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED The present study aimed to (1) employ the method for evaluation of vibration containing multiple shocks according to ISO/CD 2631-5:2014 (Model 1) and DIN SPEC 45697:2012 in a cohort of 537 professional drivers, (2) deliver the results for a re-analysis of epidemiological data obtained in the VIBRISKS study, (3) clarify the extent to which vibration acceleration and individual variables influence risk values, such as the daily compressive dose S(ed) and the risk factor R, and (4) compare the results with in vivo measurements and those obtained in previous studies with similar models. The risk factor R was influenced by the acceleration, lifetime exposure duration, sitting posture, age at the start of exposure and body mass/body mass index in order of decreasing effect. Age and annual and daily exposure duration had only a marginal effect. The daily compressive dose S(ed) and the risk factor R showed weak linear association with the daily vibration exposure A(8) and the vibration dose value VDV. The study revealed high shear forces in the lumbar spine. PRACTITIONER SUMMARY In a re-analysis of an epidemiological study of professional drivers, a software tool available with standards DIN SPEC 45697:2012 and ISO/CD 2631–5:2014 Model 1 was used to calculate the risk to the lumbar spine in terms of daily compressive dose S(ed) and risk factor R. The tool was found to be suitable for risk assessment in a large cohort.
Collapse
Affiliation(s)
- Marianne Schust
- a Federal Institute for Occupational Safety and Health , Unit for Experimental Research on Occupational Health , Berlin , Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Tarabini M, Saggin B, Scaccabarozzi D. Whole-body vibration exposure in sport: four relevant cases. ERGONOMICS 2014; 58:1143-1150. [PMID: 25267689 DOI: 10.1080/00140139.2014.961969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UNLABELLED This study investigates the whole-body vibration exposure in kite surfing, alpine skiing, snowboarding and cycling. The vibration exposure was experimentally evaluated following the ISO 2631 guidelines. Results evidenced that the most critical axis is the vertical one. The weighted vibration levels are always larger than 2.5 m/s(2) and the vibration dose values are larger than 25 m/s(1.75). The exposure limit values of the EU directive are reached after 8-37 min depending on the sport. The vibration magnitude is influenced by the athletes' speed, by their skill level and sometimes by the equipment. The large vibration values suggest that the practice of sport activities may be a confounding factor in the aetiology of vibration-related diseases. PRACTITIONER SUMMARY The vibration exposure in some sports is expected to be large, but has never been quantified in the literature. Results of experiments performed in cycling, alpine and water sports outlined vibration levels exceeding the EU standard limit values.
Collapse
Affiliation(s)
- Marco Tarabini
- a Dipartimento di Meccanica , Politecnico di Milano , via Previati 1/C, 23900 Lecco , Italy
| | | | | |
Collapse
|
19
|
Byeon JH, Kim JW, Jeong HJ, Sim YJ, Kim DK, Choi JK, Im HJ, Kim GC. Degenerative changes of spine in helicopter pilots. Ann Rehabil Med 2013; 37:706-12. [PMID: 24236259 PMCID: PMC3825948 DOI: 10.5535/arm.2013.37.5.706] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/29/2013] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To determine the relationship between whole body vibration (WBV) induced helicopter flights and degenerative changes of the cervical and lumbar spine. METHODS We examined 186 helicopter pilots who were exposed to WBV and 94 military clerical workers at a military hospital. Questionnaires and interviews were completed for 164 of the 186 pilots (response rate, 88.2%) and 88 of the 94 clerical workers (response rate, 93.6%). Radiographic examinations of the cervical and the lumbar spines were performed after obtaining informed consent in both groups. Degenerative changes of the cervical and lumbar spines were determined using four radiographs per subject, and diagnosed by two independent, blinded radiologists. RESULTS There was no significant difference in general and work-related characteristics except for flight hours and frequency between helicopter pilots and clerical workers. Degenerative changes in the cervical spine were significantly more prevalent in the helicopter pilots compared with control group. In the cervical spine multivariate model, accumulated flight hours (per 100 hours) was associated with degenerative changes. And in the lumbar spine multivariate model, accumulated flight hours (per 100 hours) and age were associated with degenerative changes. CONCLUSION Accumulated flight hours were associated with degenerative changes of the cervical and lumbar spines in helicopter pilots.
Collapse
Affiliation(s)
- Joo Hyeon Byeon
- Department of Occupational Medicine, Changwon Fatima Hospital, Changwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dewangan KN, Rakheja S, Marcotte P, Shahmir A, Patra SK. Comparisons of apparent mass responses of human subjects seated on rigid and elastic seats under vertical vibration. ERGONOMICS 2013; 56:1806-1822. [PMID: 24088118 DOI: 10.1080/00140139.2013.842656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The apparent mass (AM) responses of human body seated on elastic seat, without and with a vertical back support, are measured using a seat pressure sensing mat under three levels of vertical vibration (0.25, 0.50 and 0.75 m/s(2) rms acceleration) in 0.50-20 Hz frequency range. The responses were also measured with a rigid seat using the pressure mat and a force plate in order to examine the validity of the pressure mat. The pressure mat resulted in considerably lower AM magnitudes compared to the force plate. A correction function was proposed and applied, which resulted in comparable AM from both measurement systems for the rigid seat. The correction function was subsequently applied to derive AM of subjects seated on elastic seat. The responses revealed lower peak magnitude and corresponding frequency compared to those measured with rigid seat, irrespective of back support and excitation considered.
Collapse
Affiliation(s)
- K N Dewangan
- a CONCAVE Research Centre, Concordia University , Montreal , Canada
| | | | | | | | | |
Collapse
|
21
|
Comparing Health Risks to Load-Haul-Dump Vehicle Operators Exposed to Whole-Body Vibration Using EU Directive 2002/44EC, ISO 2631-1 and ISO 2631-5. MINERALS 2013. [DOI: 10.3390/min3010016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Abstract
STUDY DESIGN Survival analyses of a large cohort of published lumbar spine compression fatigue tests. OBJECTIVE To produce the first large-scale evaluation of human lumbar spine tolerance to repetitive compressive loading and to evaluate and improve guidelines for human exposure to whole-body vibration and repeated mechanical shock environments. SUMMARY OF BACKGROUND DATA Several studies have examined the effects of compressive cyclic loading on the lumbar spine. However, no previous effort has coalesced these studies and produced an injury risk analysis with an expanded sample size. Guidelines have been developed for exposure limits to repetitive loading (e.g., ISO 2631-5), but there has been no large-scale verification of the standard against experimental data. METHODS Survival analyses were performed using the results of 77 male and 28 female cadaveric spinal segment fatigue tests from 6 previously published studies. Segments were fixed at each end and exposed to axial cyclic compression. The effects of the number of cycles, load amplitude, sex, and age were examined through the use of survival analyses. RESULTS Number of cycles, load amplitude, sex, and age all are significant factors in the likelihood of bony failure in the spinal column. Using a modification of the risk prediction parameter from ISO 2631-5, an injury risk model was developed, which relates risk of vertebral failure to repeated compressive loading. The model predicts lifetime risks less than 7% for industrial machinery exposure from axial compression alone. There was a 38% risk for a high-speed planing craft operator, consistent with epidemiological evidence. CONCLUSION A spinal fatigue model which predicts the risk of in vitro lumbar spinal failure within a narrow confidence interval has been developed. Age and sex were found to have significant effects on fatigue strength, with sex differences extending beyond those accounted for by endplate area disparities.
Collapse
|
23
|
Abstract
STUDY DESIGN An in vitro biomechanics investigation exposing porcine functional spinal units (FSUs) to submaximal cyclic or static compressive forces while in a flexed, neutral, or extended posture. OBJECTIVE To investigate the combined effect of cyclically applied compressive force (e.g., vibration) and postural deviation on intervertebral joint mechanics. SUMMARY OF BACKGROUND DATA Independently, prolonged vibration exposure and non-neutral postures are known risk factors for development of low back pain and injury. However, there is limited basic scientific evidence to explain how the risk of low back injury from vibration exposure is modified by other mechanical factors. This work examined the influence of static postural deviation on vertebral joint height loss and compressive stiffness under cyclically applied compressive force. METHODS Forty-eight FSUs, consisting of 2 adjacent vertebrae, ligaments, and the intervening intervertebral disc were included in the study. Each specimen was randomized to 1 of 3 experimental posture conditions (neutral, flexed, or extended) and assigned to 1 of 2 loading protocols, consisting of (1) cyclic (1500 ± 1200 N applied at 5 Hz using a sinusoidal waveform, resulting in 0.2 g rms acceleration) or (2) 1500 N of static compressive force. RESULTS.: As expected, FSU height loss followed a typical first-order response in both the static and cyclic loading protocols, with the majority (~50%) of the loss occurring in the first 20 minutes of testing. A significant interaction between posture and loading protocol (P < 0.001) was noted in the magnitude of FSU height loss. Subsequent analysis of simple effects revealed significant differences between cyclic and static loading protocols in both a neutral (P = 0.016) and a flexed posture (P < 0.0001). No significant differences (P = 0.320) were noted between pre/postmeasurements of FSU compressive stiffness. CONCLUSION Posture is an important mechanical factor to consider when assessing the risk of injury from cyclic loading to the lumbar spine.
Collapse
|
24
|
Ceccarelli G, Benedetti L, Galli D, Prè D, Silvani G, Crosetto N, Magenes G, Cusella De Angelis MG. Low-amplitude high frequency vibration down-regulates myostatin and atrogin-1 expression, two components of the atrophy pathway in muscle cells. J Tissue Eng Regen Med 2012; 8:396-406. [PMID: 22711460 DOI: 10.1002/term.1533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/18/2012] [Accepted: 04/04/2012] [Indexed: 11/07/2022]
Abstract
Whole body vibration (WBV) is a very widespread mechanical stimulus used in physical therapy, rehabilitation and fitness centres. It has been demonstrated that vibration induces improvements in muscular strength and performance and increases bone density. We investigated the effects of low-amplitude, high frequency vibration (HFV) at the cellular and tissue levels in muscle. We developed a system to produce vibrations adapted to test several parameters in vitro and in vivo. For in vivo experiments, we used newborn CD1 wild-type mice, for in vitro experiments, we isolated satellite cells from 6-day-old CD1 mice, while for proliferation studies, we used murine cell lines. Animals and cells were treated with high frequency vibration at 30 Hz. We analyzed the effects of mechanical stimulation on muscle hypertrophy/atrophy pathways, fusion enhancement of myoblast cells and modifications in the proliferation rate of cells. Results demonstrated that mechanical vibration strongly down-regulates atrophy genes both in vivo and in vitro. The in vitro experiments indicated that mechanical stimulation promotes fusion of satellite cells treated directly in culture compared to controls. Finally, proliferation experiments indicated that stimulated cells had a decreased growth rate compared to controls. We concluded that vibration treatment at 30 Hz is effective in suppressing the atrophy pathway both in vivo and in vitro and enhances fusion of satellite muscle cells.
Collapse
Affiliation(s)
- Gabriele Ceccarelli
- Dipartimento di Medicina Sperimentale, University of Pavia, Italy; Centro di Ingegneria Tissutale, University of Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations. Hum Mov Sci 2012; 31:1238-46. [PMID: 22516837 DOI: 10.1016/j.humov.2011.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/22/2022]
Abstract
Studies assessing whole body vibration (WBV) have produced largely positive effects, with some neutral, on postural control with frequencies between 25 and 40 Hz. However no conclusive evidence indicates that 25-40 Hz elicits the optimal beneficial effects. To address this issue, a larger range of vibration intensity (10-50 Hz at peak-to-peak amplitudes of 2 and 5mm) was employed while increasing the postural complexity (altered somatosensory and/or visual information) to assess acute effects of 4-min of WBV on postural control. Twelve healthy young adults underwent postural assessment at four time intervals (prior to, immediately following and 10 and 20 min post WBV). Findings revealed both postural sway frequency and sway complexity/regularity were affected by WBV. Baseline posture demonstrated increased sway frequency (p=.04) following WBV with no changes in sway complexity. When the support surface was altered, changes in both the frequency and complexity of sway were elicited (p=.027, .002, respectively). When both somatosensory and visual information were altered delayed improvements in postural control were elicited (p=.05 and .01, for frequency and complexity, respectively). Given the differential acute effects as a function of postural task complexity, future longitudinal studies could determine the overall training effect on sway frequency and complexity.
Collapse
|
26
|
Johanning E. Vibration and shock exposure of maintenance-of-way vehicles in the railroad industry. APPLIED ERGONOMICS 2011; 42:555-562. [PMID: 20870218 DOI: 10.1016/j.apergo.2010.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 06/13/2010] [Accepted: 06/30/2010] [Indexed: 05/29/2023]
Abstract
The aim of this study is to investigate and compare vibration and shock measurements of maintenance-of-way vehicles used in the railroad industry for track maintenance and construction. Following international standards (i.e., ISO 2631-1: 1997) and professional guidelines the frequency weighted root-mean-square (r.m.s.) acceleration for each measurement axis, the vector sum, the seat effective amplitude transmissibility (SEAT), the crest factor (CF), the maximum transient vibration value (MTVV), the vibration dose value (VDV), the ratio and the newly proposed shock risk estimation factor 'R' for spinal injury according to ISO 2631-5:2004 were measured and calculated for seven different maintenance-of-way vehicles during revenue service. Furthermore, a proposed alternative spinal injury prediction method, the VibRisk model, which incorporates different typical driver postures and operator physical characteristics was included for comparison with the ISO 2631-5 risk prediction. The results of the vibration exposure measurements depended on vehicle type, track/surface conditions and seat properties, with the tamper and bulldozer showing the highest r.m.s. vibration values. The vector sum (a(v)) results ranged from 0.37 to 0.99 (m/s(2)). Five of seven track maintenance vehicles would exceed the current Whole-body Vibration ACGIH-TLV(®) guideline for an 8 h exposure duration in the vertical axis recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). The measured CF, MTVV/a(w) and VDV/(a(w)·T(1/4)) ratios were at or above the critical ratios in the majority of measurements given by the ISO 2631-1 (1997) and American industry guidelines by the American Conference of Governmental Industrial Hygienists (ACGIH-TLV). Comparing both prediction models for vibration shock risk for parts of the lumbar spine, different risk predictions and inconsistencies were found. The VibRisk model generally suggests different and higher risk of vertebral endplate failure for individual lumbar levels, whereas the ISO 2631-5 model indicated generally lower risks and did not differentiate between different disk levels and driver posture. Epidemiological studies validating the different shock risk models are lacking. Work modifications and adequate suspension seats would be beneficial for prevention of harmful exposure to vibration and shocks.
Collapse
Affiliation(s)
- Eckardt Johanning
- Occupational and Environmental Life Science, 4 Executive Park Drive, Albany, NY 12203, USA.
| |
Collapse
|
27
|
Abstract
STUDY DESIGN Numerical techniques were used to study the vibration response of idiopathic scoliosis patients with single thoracic curve. OBJECTIVE To analyze the dynamic characteristics of the idiopathic scoliotic spine under the whole-body vibration condition. The influence of the upper body mass was also studied. SUMMARY OF BACKGROUND DATA The relationship between the whole-body vibration and the spinal disorders has been investigated using finite element method. However, the dynamic response features of the scoliotic spine to the vibration were poorly understood. METHODS The resonant frequencies of the scoliotic spine and the effects of the body weight were studied using a finite element model described previously. Modal and harmonic analysis was conducted. The amplitudes of 6 fundamental vertebral movements around the long, coronal and sagittal axis were quantified in the frequency range of 1 to 35 Hz. RESULTS The vibration-induced rotation amplitudes of the apex of the thoracic deformity were higher than that of the lumbar segments. The apical vertebrae had the greatest rotation amplitudes at 2 and 8 Hz, and the largest lateral translation amplitudes at 16 Hz. Vibration could cause large lateral flexion amplitudes in the apex of the thoracic deformity. The apical vertebrae had the largest side flexion amplitudes at 6 Hz. Increasing upper body mass could not change resonant frequency of vibration-induced lateral translation and rotation around the long axis of the apical vertebrae. CONCLUSION The scoliotic spine is more sensitive to vibration than the normal spine. For a patient with single thoracic curve, long-term whole-body vibration may do more harm to the thoracic deformity than to the lower lumbar segments. Axial cyclic loads applied to an already deformed spine may cause further rotational and scoliotic deformity. The patients with idiopathic scoliosis are more likely to suffer from vibration-induced spinal disorders than those by normal persons.
Collapse
|
28
|
Rohlmann A, Hinz B, Blüthner R, Graichen F, Bergmann G. Loads on a spinal implant measured in vivo during whole-body vibration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2010; 19:1129-35. [PMID: 20186440 DOI: 10.1007/s00586-010-1346-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/21/2010] [Accepted: 02/11/2010] [Indexed: 11/29/2022]
Abstract
After spinal surgery, patients often want to know whether driving a car or using public transportation can be dangerous for their spine. In order to answer this question, a clinically proven vertebral body replacement (VBR) has been modified. Six load sensors and a telemetry unit were integrated into the inductively powered implant. The modified implant allows the measurement of six load components. Telemeterized devices were implanted in five patients; four of them agreed to exposure themselves to whole-body vibration. During the measurements, the patients sat on a driver seat fixed to a hexapod. They were exposed to random single-axis vibrations in X, Y, and Z directions as well as in multi-axis XYZ directions with frequencies between 0.3 and 30 Hz. Three intensity levels (unweighted root mean square values of 0.25, 0.5 and 1.0 m/s(2)) were applied. Three postures were studied: sitting freely, using a vertical backrest, and a backrest declined by an angle of 25 degrees . The patients held their hands on their thighs. As expected, the maximum force on the VBR increased with increasing intensity and the number of axes. For the highest intensity level and multi-axis vibration, the maximum forces increased by 89% compared to sitting relaxed. Leaning at the backrest as well as lower intensity levels markedly decreased the implant loads. Driving a car or using public transportation systems-when the patient leans towards the backrest-leads to lower implant loads than walking, and can therefore be allowed already shortly after surgery.
Collapse
Affiliation(s)
- Antonius Rohlmann
- Julius Wolff Institut, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | |
Collapse
|
29
|
Improvement of Stance Control and Muscle Performance Induced by Focal Muscle Vibration in Young-Elderly Women: A Randomized Controlled Trial. Arch Phys Med Rehabil 2009; 90:2019-25. [DOI: 10.1016/j.apmr.2009.08.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
|
30
|
Mansfield NJ, Newell GS, Notini L. Earth moving machine whole-body vibration and the contribution of Sub-1Hz components to ISO 2631-1 metrics. INDUSTRIAL HEALTH 2009; 47:402-410. [PMID: 19672014 DOI: 10.2486/indhealth.47.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Exposure to whole-body vibration (WBV) is an occupational hazard for operators of industrial vehicles, such as earth-moving machines. Quantification of WBV exposure in terms of impact on health forms one aspect of the Standard ISO 2631-1 (1997). Regarding assessment of risk to health, ISO 2631-1 (1997) states that if WBV components below 1 Hz are not ;relevant nor important' then they can be excluded from the assessment. In this paper the influence of sub-1 Hz components in WBV acquired from a sample of 46 earth moving machines is evaluated in terms of their contribution to ISO 2631-1 WBV exposure dose metrics: frequency weighted r.m.s. and the vibration dose value (VDV). For the majority of machines, a high proportion of the horizontal (x- and y-axis) WBV r.m.s. and VDV values was generated by sub-1 Hz vibration components; there was a much lower proportion of the vertical (z-axis) vibration generated by such components.
Collapse
Affiliation(s)
- Neil J Mansfield
- Department of Human Sciences, Loughborough University, Loughborough, Leics, LE11 3TU, UK
| | | | | |
Collapse
|
31
|
Abstract
Whole body vibration exposure of the train drivers working for State Railway Lines is assessed by referring to ISO standard 2631 -1 and EU directive 2002/44/EC. The vibration measurements were done in the cabins of suburban and intercity train drivers. Suburban train driver performs his job usually in standing posture. Whereas intercity train driver works generally in seated (bending forward) posture and exposed to longer periods of continuous vibration, compared to suburban train drivers. The mean accelerations, a, along lateral, y, and vertical, z, directions measured on the driver seat (on the cabin floor) of the intercity (suburban) train were 1.4a (y) = 0.55 (0.28) m/s(2) and a (z) = 0.65 (0.23) m/s(2). Daily exposure action values suggested in EU directive are exceeded in case of intercity train drivers and their exposure falls within the health caution zone of ISO 2631-1. Intercity train drivers are therefore under the risk of having spinal disorders. A health surveillance plan requiring every five years the reassessment of the state of the spinal system of train drivers is suggested. As an early preventive measure, extended work day or more than one shift in a day is advised to be discouraged.
Collapse
Affiliation(s)
- Gülin Birlik
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
32
|
Bazrgari B, Shirazi-Adl A, Kasra M. Seated whole body vibrations with high-magnitude accelerations—relative roles of inertia and muscle forces. J Biomech 2008; 41:2639-46. [DOI: 10.1016/j.jbiomech.2008.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 10/21/2022]
|
33
|
Fattorini L, Ferraresi A, Rodio A, Azzena GB, Filippi GM. Motor performance changes induced by muscle vibration. Eur J Appl Physiol 2006; 98:79-87. [PMID: 16896736 DOI: 10.1007/s00421-006-0250-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2006] [Indexed: 11/30/2022]
Abstract
The possibility that mechanical stimulation of selected muscles can act directly on the nervous system inducing persistent changes of motor performances was explored. On the basis of literature, stimulating parameters were chosen to stimulate the central nervous system and to avoid muscle fibre injuries. A sinusoidal mechanical vibration was applied, for three consecutive days, on the quadriceps muscle in seven subjects that performed a muscular contraction (VC). The same stimulation paradigm was applied on seven subjects in relaxed muscle condition (VR) and seven subjects were not treated at all (NV). Two sessions (PRE and POST) of isometric and isotonic tests were performed separated for 21 days, in all studied groups 7 days before and 15 days after stimulation, whilst an isokinetic test was performed on VC only. In the isometric test, the time of force development showed a significant decrease only in VC (POST vs PRE mean 27.8%, P < 0.05). In the isotonic test, the subjects' had to perform a fatiguing leg extension against a load. In this condition, the fatigue resistance increased greatly in VC (mean 40.3%, P < 0.001), increased slightly in VR and there was no difference in NV. In Isokinetic test, at several angular velocities, significantly less time was required to reach the force peak (mean 20.2% P < 0.05). The findings could be ascribed to plastic changes in proprioceptive processing, leading to an improvement in knee joint control. Such action delineates a new tool in sports training and in motor rehabilitation.
Collapse
Affiliation(s)
- Luigi Fattorini
- Dept of Human Physiology, University of Rome La Sapienza, P le Aldo Moro 5, Rome, Italy.
| | | | | | | | | |
Collapse
|