1
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
2
|
Hosseini B, Hall AL, Zendehdel K, Kromhout H, Onyije FM, Moradzadeh R, Zamanian M, Schüz J, Olsson A. Occupational Exposure to Carcinogens and Occupational Epidemiological Cancer Studies in Iran: A Review. Cancers (Basel) 2021; 13:3581. [PMID: 34298794 PMCID: PMC8305339 DOI: 10.3390/cancers13143581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The extent of exposure to occupational carcinogens is not well characterized in Iran, and little is known about the burden of occupational cancer. OBJECTIVES This study aimed to describe exposure to occupational carcinogens and occupational epidemiology studies in Iran. METHODS Relevant studies up to January 2021 in Iran were identified through three databases (PubMed, Web of Science, and Google Scholar). RESULTS Forty-nine publications from 2009 to 2020 (one cohort, 11 case-control, 34 exposure monitoring studies, and three cancer burden studies) were included. The exposure monitoring studies were conducted mainly in the petroleum industry, metal industry, manufacturing of electronics, manufacturing of plastics, construction industry, and service industry. A few of the case-control studies also reported increased risk of cancers in relation to work in those industries. CONCLUSIONS Occupational cancer epidemiology in Iran is at an early stage. Both epidemiological and exposure monitoring studies are generally limited in size to provide robust evidence of occupational cancer risks. A coherent strategy to estimate the occupational cancer burden in Iran should start with conducting epidemiological studies along with systematic monitoring of occupational carcinogens for use in hazard control and research.
Collapse
Affiliation(s)
- Bayan Hosseini
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), CEDEX 08, 69372 Lyon, France; (B.H.); (F.M.O.); (J.S.)
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Amy L. Hall
- Government of Canada, Charlottetown, PE C1A 1N3, Canada;
| | - Kazem Zendehdel
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran 1419733141, Iran;
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Felix M. Onyije
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), CEDEX 08, 69372 Lyon, France; (B.H.); (F.M.O.); (J.S.)
| | - Rahmatollah Moradzadeh
- Department of Epidemiology, School of Public Health, Arak University of Medical Sciences, Arak 3819693345, Iran; (R.M.); (M.Z.)
| | - Maryam Zamanian
- Department of Epidemiology, School of Public Health, Arak University of Medical Sciences, Arak 3819693345, Iran; (R.M.); (M.Z.)
| | - Joachim Schüz
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), CEDEX 08, 69372 Lyon, France; (B.H.); (F.M.O.); (J.S.)
| | - Ann Olsson
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), CEDEX 08, 69372 Lyon, France; (B.H.); (F.M.O.); (J.S.)
| |
Collapse
|
3
|
Valenzuela M, Giraldo M, Gallo-Murcia S, Pineda J, Santos L, Ramos-Bonilla JP. Recent Scientific Evidence Regarding Asbestos Use and Health Consequences of Asbestos Exposure. Curr Environ Health Rep 2018; 3:335-347. [PMID: 27696225 DOI: 10.1007/s40572-016-0109-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To justify the continuous use of two million tons of asbestos every year, it has been argued that a safe/controlled use can be achieved. The aim of this review was to identify recent scientific studies that present empirical evidence of: 1) health consequences resulting from past asbestos exposures and 2) current asbestos exposures resulting from asbestos use. Articles with evidence that could support or reject the safe/controlled use argument were also identified. A total of 155 articles were included in the review, and 87 % showed adverse asbestos health consequences or high asbestos exposures. Regarding the safe/controlled use, 44 articles were identified, and 82 % had evidence suggesting that the safe/controlled use is not being achieved. A large percentage of articles with evidence that support the safe/controlled use argument have a conflict of interest declared. Most of the evidence was developed in high-income countries and in countries that have already banned asbestos.
Collapse
Affiliation(s)
- Manuela Valenzuela
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia
| | - Margarita Giraldo
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia
| | - Sonia Gallo-Murcia
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia
| | - Juliana Pineda
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia
| | - Laura Santos
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia
| | - Juan Pablo Ramos-Bonilla
- Department of Civil and Environmental Engineering, Universidad de los Andes, Cra 1ª Este No. 19A-40, Bogotá, Colombia.
| |
Collapse
|
4
|
Matullo G, Guarrera S, Betti M, Fiorito G, Ferrante D, Voglino F, Cadby G, Di Gaetano C, Rosa F, Russo A, Hirvonen A, Casalone E, Tunesi S, Padoan M, Giordano M, Aspesi A, Casadio C, Ardissone F, Ruffini E, Betta PG, Libener R, Guaschino R, Piccolini E, Neri M, Musk AWB, de Klerk NH, Hui J, Beilby J, James AL, Creaney J, Robinson BW, Mukherjee S, Palmer LJ, Mirabelli D, Ugolini D, Bonassi S, Magnani C, Dianzani I. Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study. PLoS One 2013; 8:e61253. [PMID: 23626673 PMCID: PMC3634031 DOI: 10.1371/journal.pone.0061253] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/06/2013] [Indexed: 12/19/2022] Open
Abstract
Asbestos exposure is the main risk factor for malignant pleural mesothelioma (MPM), a rare aggressive tumor. Nevertheless, only 5-17% of those exposed to asbestos develop MPM, suggesting the involvement of other environmental and genetic risk factors. To identify the genetic risk factors that may contribute to the development of MPM, we conducted a genome-wide association study (GWAS; 370,000 genotyped SNPs, 5 million imputed SNPs) in Italy, among 407 MPM cases and 389 controls with a complete history of asbestos exposure. A replication study was also undertaken and included 428 MPM cases and 1269 controls from Australia. Although no single marker reached the genome-wide significance threshold, several associations were supported by haplotype-, chromosomal region-, gene- and gene-ontology process-based analyses. Most of these SNPs were located in regions reported to harbor aberrant alterations in mesothelioma (SLC7A14, THRB, CEBP350, ADAMTS2, ETV1, PVT1 and MMP14 genes), causing at most a 2-3-fold increase in MPM risk. The Australian replication study showed significant associations in five of these chromosomal regions (3q26.2, 4q32.1, 7p22.2, 14q11.2, 15q14). Multivariate analysis suggested an independent contribution of 10 genetic variants, with an Area Under the ROC Curve (AUC) of 0.76 when only exposure and covariates were included in the model, and of 0.86 when the genetic component was also included, with a substantial increase of asbestos exposure risk estimation (odds ratio, OR: 45.28, 95% confidence interval, CI: 21.52-95.28). These results showed that genetic risk factors may play an additional role in the development of MPM, and that these should be taken into account to better estimate individual MPM risk in individuals who have been exposed to asbestos.
Collapse
Affiliation(s)
- Giuseppe Matullo
- Human Genetics Foundation, HuGeF, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Marta Betti
- Laboratory of Genetic Pathology, Department Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Daniela Ferrante
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | | | - Gemma Cadby
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Centre for Genetic Epidemiology and Biostatistics, University of Western Australia, Nedlands, Western Australia, Australia
| | - Cornelia Di Gaetano
- Human Genetics Foundation, HuGeF, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Fabio Rosa
- Human Genetics Foundation, HuGeF, Turin, Italy
| | - Alessia Russo
- Human Genetics Foundation, HuGeF, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ari Hirvonen
- Centre of Expertise for Health and Work Ability, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Elisabetta Casalone
- Laboratory of Genetic Pathology, Department Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Sara Tunesi
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marina Padoan
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Mara Giordano
- Laboratory of Genetics, Department Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Laboratory of Genetic Pathology, Department Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Caterina Casadio
- Thoracic Surgery Unit, University of Piemonte Orientale, Novara, Italy
| | - Francesco Ardissone
- Chest Surgery, Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Enrico Ruffini
- Thoracic Surgery Unit, University of Turin, Turin, Italy
| | - Pier Giacomo Betta
- Pathology Unit, Azienda Ospedaliera Nazionale SS, Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Roberta Libener
- Pathology Unit, Azienda Ospedaliera Nazionale SS, Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Roberto Guaschino
- Transfusion Centre, Azienda Ospedaliera Nazionale SS, Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Ezio Piccolini
- Pneumology Unit, Santo Spirito Hospital, Casale Monferrato, Italy
| | - Monica Neri
- Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, Rome, Italy
| | - Arthur W. B. Musk
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas H. de Klerk
- Centre for Child Health Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jennie Hui
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - John Beilby
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
- PathWest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Alan L. James
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jenette Creaney
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bruce W. Robinson
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- National Centre for Asbestos Related Disease, School of Medicine and Pharmacology, University of Western Australia, Nedlands, Western Australia, Australia
| | - Sutapa Mukherjee
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute and Women's College Hospital, Toronto, Ontario, Canada
| | - Lyle J. Palmer
- Genetic Epidemiology and Biostatistics Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Prosserman Centre for Health Research, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Dario Mirabelli
- Unit of Cancer Epidemiology, CPO-Piemonte and University of Turin, Turin, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, Turin, Italy
| | - Donatella Ugolini
- Department of Internal Medicine, University of Genoa and IRCSS AOU San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology IRCCS San Raffaele Pisana, Rome, Italy
| | - Corrado Magnani
- CPO-Piemonte and Unit of Medical Statistics and Epidemiology, Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, Turin, Italy
| | - Irma Dianzani
- Laboratory of Genetic Pathology, Department Health Sciences, University of Piemonte Orientale, Novara, Italy
- Interdepartmental Center for Studies on Asbestos and other Toxic Particulates “G. Scansetti”, University of Turin, Turin, Italy
| |
Collapse
|