1
|
Horiuchi A, Masuda K, Shirasawa K, Onoue N, Matsuzaki R, Tao R, Kubo Y, Ushijima K, Akagi T. Genetic basis of lineage-specific evolution of fruit traits in hexaploid persimmon. DNA Res 2023; 30:dsad015. [PMID: 37326063 PMCID: PMC10468310 DOI: 10.1093/dnares/dsad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
Frequent polyploidization events in plants have led to the establishment of many lineage-specific traits representing each species. Little is known about the genetic bases for these specific traits in polyploids, presumably due to plant genomic complexity and their difficulties in applying genetic approaches. Hexaploid Oriental persimmon (Diospyros kaki) has evolved specific fruit characteristics, including wide variations in fruit shapes and astringency. In this study, using whole-genome diploidized/quantitative genotypes from ddRAD-Seq data of 173 persimmon cultivars, we examined their population structures and potential correlations between their structural transitions and variations in nine fruit traits. The population structures of persimmon cultivars were highly randomized and not substantially correlated with the representative fruit traits focused on in this study, except for fruit astringency. With genome-wide association analytic tools considering polyploid alleles, we identified the loci associated with the nine fruit traits; we mainly focused on fruit-shape variations, which have been numerically characterized by principal component analysis of elliptic Fourier descriptors. The genomic regions that putatively underwent selective sweep exhibited no overlap with the loci associated with these persimmon-specific fruit traits. These insights will contribute to understanding the genetic mechanisms by which fruit traits are independently established, possibly due to polyploidization events.
Collapse
Affiliation(s)
- Ayano Horiuchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | - Noriyuki Onoue
- Institute of Fruit Tree and Tea Science, NARO, Hiroshima 739-2494, Japan
| | - Ryusuke Matsuzaki
- Institute of Fruit Tree and Tea Science, NARO, Hiroshima 739-2494, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
2
|
Pawar GB, Mane RN, Yadav SR. Karyomorphological Studies on Two Species of Diospyros (Ebenaceae) from India. CYTOLOGIA 2021. [DOI: 10.1508/cytologia.86.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Ganesh B. Pawar
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University
| | - Rohit N. Mane
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University
| | - Shrirang R. Yadav
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University
| |
Collapse
|
3
|
Akagi T, Shirasawa K, Nagasaki H, Hirakawa H, Tao R, Comai L, Henry IM. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet 2020; 16:e1008566. [PMID: 32069274 PMCID: PMC7048303 DOI: 10.1371/journal.pgen.1008566] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/28/2020] [Accepted: 12/14/2019] [Indexed: 01/20/2023] Open
Abstract
Most angiosperms bear hermaphroditic flowers, but a few species have evolved outcrossing strategies, such as dioecy, the presence of separate male and female individuals. We previously investigated the mechanisms underlying dioecy in diploid persimmon (D. lotus) and found that male flowers are specified by repression of the autosomal gene MeGI by its paralog, the Y-encoded pseudo-gene OGI. This mechanism is thought to be lineage-specific, but its evolutionary path remains unknown. Here, we developed a full draft of the diploid persimmon genome (D. lotus), which revealed a lineage-specific whole-genome duplication event and provided information on the architecture of the Y chromosome. We also identified three paralogs, MeGI, OGI and newly identified Sister of MeGI (SiMeGI). Evolutionary analysis suggested that MeGI underwent adaptive evolution after the whole-genome duplication event. Transformation of tobacco plants with MeGI and SiMeGI revealed that MeGI specifically acquired a new function as a repressor of male organ development, while SiMeGI presumably maintained the original function. Later, a segmental duplication event spawned MeGI’s regulator OGI on the Y-chromosome, completing the path leading to dioecy, and probably initiating the formation of the Y-chromosome. These findings exemplify how duplication events can provide flexible genetic material available to help respond to varying environments and provide interesting parallels for our understanding of the mechanisms underlying the transition into dieocy in plants. Plant sexuality has fascinated scientists for decades. Most plants can self-reproduce but not all. For example, a small subset of species have evolved a system called dioecy, with separate male and female individuals. Dioecy has evolved multiple times independently and, while we do not understand the molecular mechanisms underlying dioecy in many of these species yet, a picture is starting to emerge with recent progress in several dioecious species. Here, we focused on the evolutionary events leading to dioecy in persimmon. Our previous work had identified a pair of genes regulating sex in this species, called OGI and MeGI. We drafted the whole genome sequence of diploid persimmon to investigate their evolutionary history. We discovered a lineage-specific whole-genome duplication event, and observed that MeGI underwent adaptive evolution after this event. Transgenic analyses validated that MeGI newly acquired a male-suppressor function, while the other copy of this gene, SiMeGI, did not. The regulator of MeGI, OGI, resulted from a second smaller-scale segmental duplication event, finalizing the system. This study sheds light on the role of duplication as a mechanism that promote flexible genes functions, and how it can affect important biological functions, such as the establishment of a new sexual system.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan
- * E-mail: (TA); (IMH)
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Hideki Nagasaki
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Luca Comai
- Genome Center and Department of Plant Biology, University of California Davis, Davis, California, United States of America
| | - Isabelle M. Henry
- Genome Center and Department of Plant Biology, University of California Davis, Davis, California, United States of America
- * E-mail: (TA); (IMH)
| |
Collapse
|
4
|
Veltsos P, Cossard G, Beaudoing E, Beydon G, Savova Bianchi D, Roux C, C González-Martínez S, R Pannell J. Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious Mercurialis annua, a Plant with Homomorphic Sex Chromosomes. Genes (Basel) 2018; 9:E277. [PMID: 29844299 PMCID: PMC6027223 DOI: 10.3390/genes9060277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023] Open
Abstract
Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb Mercurialis annua, a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for M. annua. Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of M. annua pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant.
Collapse
Affiliation(s)
- Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- Department of Biology, Jordan Hall, 1001 East Third Street, Indiana University, Bloomington, IN 47405, USA.
| | - Guillaume Cossard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Emmanuel Beaudoing
- Faculty of Biology and Medicine, University of Lausanne, Bâtiment Génopode, 1014 Lausanne, Switzerland.
| | - Genséric Beydon
- National Centre for Genomic Resources (CNRGV), 24 Chemin de Borde Rouge-Auzeville-CS52627, 31326 Castanet Tolosan Cedex, France.
| | | | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- CNRS, University of Lille, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Santiago C González-Martínez
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
- BIOGECO, INRA, University of Bordeaux, 33610 Cestas, France.
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
5
|
Akagi T, Kajita K, Kibe T, Morimura H, Tsujimoto T, Nishiyama S, Kawai T, Yamane H, Tao R. Development of Molecular Markers Associated with Sexuality in Diospyros lotus L. and Their Application in D. kaki Thunb. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.ch-109] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Turner B, Munzinger J, Duangjai S, Temsch EM, Stockenhuber R, Barfuss MHJ, Chase MW, Samuel R. Molecular phylogenetics of New Caledonian Diospyros (Ebenaceae) using plastid and nuclear markers. Mol Phylogenet Evol 2013; 69:740-63. [PMID: 23850609 PMCID: PMC3913082 DOI: 10.1016/j.ympev.2013.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/11/2023]
Abstract
To clarify phylogenetic relationships among New Caledonian species of Diospyros, sequences of four plastid markers (atpB, rbcL, trnK-matK and trnS-trnG) and two low-copy nuclear markers (ncpGS and PHYA) were analysed. New Caledonian Diospyros species fall into three clades, two of which have only a few members (1 or 5 species); the third has 21 closely related species for which relationships among species have been mostly unresolved in a previous study. Although species of the third group (NC clade III) are morphologically distinct and largely occupy different habitats, they exhibit little molecular variability. Diospyros vieillardii is sister to the rest of the NC clade III, followed by D. umbrosa and D. flavocarpa, which are sister to the rest of this clade. Species from coastal habitats of western Grande Terre (D. cherrieri and D. veillonii) and some found on coralline substrates (D. calciphila and D. inexplorata) form two well-supported subgroups. The species of NC clade III have significantly larger genomes than found in diploid species of Diospyros from other parts of the world, but they all appear to be diploids. By applying a molecular clock, we infer that the ancestor of the NC clade III arrived in New Caledonia around 9 million years ago. The oldest species are around 7 million years old and the youngest ones probably much less than 1 million years.
Collapse
Affiliation(s)
- Barbara Turner
- Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University Vienna, Rennweg 14, 1030 Wien, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Miller AJ, Gross BL. From forest to field: perennial fruit crop domestication. AMERICAN JOURNAL OF BOTANY 2011; 98:1389-414. [PMID: 21865506 DOI: 10.3732/ajb.1000522] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
PREMISE OF THE STUDY Archaeological and genetic analyses of seed-propagated annual crops have greatly advanced our understanding of plant domestication and evolution. Comparatively little is known about perennial plant domestication, a relevant topic for understanding how genes and genomes evolve in long-lived species, and how perennials respond to selection pressures operating on a relatively short time scale. Here, we focus on long-lived perennial crops (mainly trees and other woody plants) grown for their fruits. KEY RESULTS We reviewed (1) the basic biology of long-lived perennials, setting the stage for perennial domestication by considering how these species evolve in nature; (2) the suite of morphological features associated with perennial fruit crops undergoing domestication; (3) the origins and evolution of domesticated perennials grown for their fruits; and (4) the genetic basis of domestication in perennial fruit crops. CONCLUSIONS Long-lived perennials have lengthy juvenile phases, extensive outcrossing, widespread hybridization, and limited population structure. Under domestication, these features, combined with clonal propagation, multiple origins, and ongoing crop-wild gene flow, contribute to mild domestication bottlenecks in perennial fruit crops. Morphological changes under domestication have many parallels to annual crops, but with key differences for mating system evolution and mode of reproduction. Quantitative trait loci associated with domestication traits in perennials are mainly of minor effect and may not be stable across years. Future studies that take advantage of genomic approaches and consider demographic history will elucidate the genetics of agriculturally and ecologically important traits in perennial fruit crops and their wild relatives.
Collapse
Affiliation(s)
- Allison J Miller
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, Saint Louis, Missouri 63103 USA.
| | | |
Collapse
|
8
|
Kanzaki S, Akagi T, Masuko T, Kimura M, Yamada M, Sato A, Mitani N, Ustunomiya N, Yonemori K. SCAR Markers for Practical Application of Marker-assisted Selection in Persimmon (Diospyros kaki Thunb.) Breeding. ACTA ACUST UNITED AC 2010. [DOI: 10.2503/jjshs1.79.150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kanzaki S, Sato A, Yamada M, Utsunomiya N, Kitajima A, Ikegami A, Yonemori K. RFLP Markers for the Selection of Pollination-constant and Non-astringent (PCNA)-Type Persimmon and Examination of the Inheritance Mode of the Markers. ACTA ACUST UNITED AC 2008. [DOI: 10.2503/jjshs1.77.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Tanaka J, Taniguchi F, Hirai N, Yamaguchi S. Estimation of the Genome Size of Tea (Camellia sinensis), Camellia (C.japonica), and their Interspecific Hybrids by Flow Cytometry. ACTA ACUST UNITED AC 2006. [DOI: 10.5979/cha.2006.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Junichi Tanaka
- Makurazaki Tea Research Station, National Institute of Vegetable and Tea Science, National Agriculture and Bio-oriented Research Organization
| | - Fumiya Taniguchi
- Makurazaki Tea Research Station, National Institute of Vegetable and Tea Science, National Agriculture and Bio-oriented Research Organization
| | | | | |
Collapse
|
11
|
Choi YA, Tao R, Yonemori K, Sugiura A. Genomic distribution of three repetitive DNAs in cultivated hexaploid Diospyros spp. (D. kaki and D. virginiana) and their wild relatives. Genes Genet Syst 2004; 78:301-8. [PMID: 14532709 DOI: 10.1266/ggs.78.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To understand the genomic organization of Diospyros species with different ploidy levels, we cloned three different repetitive DNAs and compared their genomic distributions in ten Diospyros species, including hexaploid D. kaki and D. virginiana. Genomic Southern hybridization demonstrated that the EcoRV-repetitive DNA was present in tandem in the genomes of D. glandulosa (2n=2x=30), D. oleifera (2n=2x=30), D. lotus (2n=2x=30), D. virginiana (2n=6x=90) and D. kaki (2n=6x=90). All of these species except D. virginiana also contained the HincII-repetitive DNA in tandem. Fluorescent in situ hybridization showed that the EcoRV- and HincII-repetitive DNAs were predominantly located at the proximal or centromeric regions of chromosomes. The DraI-repetitive sequence cloned from D. ehretioides (2n=2x=30) was not found in the other Diospyros species tested. This suggests that D. ehretioides has a genomic organization different from that of the other Diospyros species. Speciation of hexaploid Diospyros species is also discussed with respect to the genomic distribution of the three repetitive DNAs cloned.
Collapse
Affiliation(s)
- Young A Choi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | |
Collapse
|
12
|
|