1
|
El-Komy MHM, Sayed KS, Gawish G, Elaguizy MM, Azzazi Y. Pulse azathioprine and low-dose methotrexate vs. standard-dose methotrexate in treatment of patients with moderate-to-severe psoriasis: a randomized controlled trial. Clin Exp Dermatol 2024; 49:1029-1035. [PMID: 38469732 DOI: 10.1093/ced/llae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND Psoriasis is a common chronic, immune-mediated inflammatory skin disease. Despite the availability of several systemic therapeutic agents, treatment of psoriasis remains a challenge because of the associated adverse effects and/or the financial burden of these medications, given the chronicity of the disease. OBJECTIVES We aimed to compare the efficacy and safety of combined pulse azathioprine (AZA) and low-dose methotrexate (MTX) vs. a conventional dose of MTX in patients with chronic plaque psoriasis. METHODS In this randomized controlled trial, 67 patients with moderate-to-severe plaque psoriasis were randomized into two groups, receiving either combined pulse AZA (300 mg weekly dose) and low-dose MTX (10 mg weekly) or conventional-dose MTX (0.3 mg kg-1 per week) for 16 weeks. Patients were assessed for treatment response using the Psoriasis Area and Severity Index (PASI) score and for the development of any adverse effects at weeks 12 and 16, and for a further 3 months after stopping treatment. RESULTS A statistically significantly higher proportion of the patients receiving combined pulse AZA and low-dose MTX achieved ≥ 90% improvement in PASI and 100% improvement (PASI 100) at week 12, and PASI 100 at week 16, compared with those receiving the conventional dose of MTX as monotherapy. No serious adverse events were reported during the entire study period in the two groups. CONCLUSIONS Combination therapy using pulse AZA and low-dose MTX can be an efficacious treatment for moderate-to-severe plaque psoriasis, with a relatively good safety profile.
Collapse
Affiliation(s)
| | - Khadiga S Sayed
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Gehad Gawish
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Yousra Azzazi
- Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Si W, Wang Z. What insights can be gained from optimizing the relevant research on methotrexate monotherapy versus methotrexate and apremilast combination therapy in the treatment of palmoplantar psoriasis? Indian J Dermatol Venereol Leprol 2023; 0:1-2. [PMID: 38031684 DOI: 10.25259/ijdvl_337_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 12/01/2023]
Affiliation(s)
- Weichen Si
- Health Management Center, Fengtai District Education Committee of Beijing Municipality, Beijing Municipal Education Commission, Beijing, China
| | - Zihan Wang
- Faculty of Chinese Medicine, Macao University of Science and Technology, Macau SAR, China
| |
Collapse
|
3
|
Sbidian E, Chaimani A, Guelimi R, Garcia-Doval I, Hua C, Hughes C, Naldi L, Kinberger M, Afach S, Le Cleach L. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Cochrane Database Syst Rev 2023; 7:CD011535. [PMID: 37436070 PMCID: PMC10337265 DOI: 10.1002/14651858.cd011535.pub6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated disease with either skin or joints manifestations, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. The relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis. OBJECTIVES To compare the benefits and harms of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their benefits and harms. SEARCH METHODS For this update of the living systematic review, we updated our searches of the following databases monthly to October 2022: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. SELECTION CRITERIA Randomised controlled trials (RCTs) of systemic treatments in adults over 18 years with moderate-to-severe plaque psoriasis, at any stage of treatment, compared to placebo or another active agent. The primary outcomes were: proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90; proportion of participants with serious adverse events (SAEs) at induction phase (8 to 24 weeks after randomisation). DATA COLLECTION AND ANALYSIS We conducted duplicate study selection, data extraction, risk of bias assessment, and analyses. We synthesised data using pairwise and network meta-analysis (NMA) to compare treatments and rank them according to effectiveness (PASI 90 score) and acceptability (inverse of SAEs). We assessed the certainty of NMA evidence for the two primary outcomes and all comparisons using CINeMA, as very low, low, moderate, or high. We contacted study authors when data were unclear or missing. We used the surface under the cumulative ranking curve (SUCRA) to infer treatment hierarchy, from 0% (worst for effectiveness or safety) to 100% (best for effectiveness or safety). MAIN RESULTS This update includes an additional 12 studies, taking the total number of included studies to 179, and randomised participants to 62,339, 67.1% men, mainly recruited from hospitals. Average age was 44.6 years, mean PASI score at baseline was 20.4 (range: 9.5 to 39). Most studies were placebo-controlled (56%). We assessed a total of 20 treatments. Most (152) trials were multicentric (two to 231 centres). One-third of the studies (65/179) had high risk of bias, 24 unclear risk, and most (90) low risk. Most studies (138/179) declared funding by a pharmaceutical company, and 24 studies did not report a funding source. Network meta-analysis at class level showed that all interventions (non-biological systemic agents, small molecules, and biological treatments) showed a higher proportion of patients reaching PASI 90 than placebo. Anti-IL17 treatment showed a higher proportion of patients reaching PASI 90 compared to all the interventions. Biologic treatments anti-IL17, anti-IL12/23, anti-IL23, and anti-TNF alpha showed a higher proportion of patients reaching PASI 90 than the non-biological systemic agents. For reaching PASI 90, the most effective drugs when compared to placebo were (SUCRA rank order, all high-certainty evidence): infliximab (risk ratio (RR) 49.16, 95% CI 20.49 to 117.95), bimekizumab (RR 27.86, 95% CI 23.56 to 32.94), ixekizumab (RR 27.35, 95% CI 23.15 to 32.29), risankizumab (RR 26.16, 95% CI 22.03 to 31.07). Clinical effectiveness of these drugs was similar when compared against each other. Bimekizumab and ixekizumab were significantly more likely to reach PASI 90 than secukinumab. Bimekizumab, ixekizumab, and risankizumab were significantly more likely to reach PASI 90 than brodalumab and guselkumab. Infliximab, anti-IL17 drugs (bimekizumab, ixekizumab, secukinumab, and brodalumab), and anti-IL23 drugs except tildrakizumab were significantly more likely to reach PASI 90 than ustekinumab, three anti-TNF alpha agents, and deucravacitinib. Ustekinumab was superior to certolizumab. Adalimumab, tildrakizumab, and ustekinumab were superior to etanercept. No significant difference was shown between apremilast and two non-biological drugs: ciclosporin and methotrexate. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. The risk of SAEs was significantly lower for participants on methotrexate compared with most of the interventions. Nevertheless, the SAE analyses were based on a very low number of events with very low- to moderate-certainty evidence for all the comparisons. The findings therefore have to be viewed with caution. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1), the results were similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions. AUTHORS' CONCLUSIONS Our review shows that, compared to placebo, the biologics infliximab, bimekizumab, ixekizumab, and risankizumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes measured from 8 to 24 weeks after randomisation), and is not sufficient for evaluating longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean 44.6 years) and high level of disease severity (PASI 20.4 at baseline) may not be typical of patients seen in daily clinical practice. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the safety evidence for most interventions was very low to moderate quality. More randomised trials directly comparing active agents are needed, and these should include systematic subgroup analyses (sex, age, ethnicity, comorbidities, psoriatic arthritis). To provide long-term information on the safety of treatments included in this review, an evaluation of non-randomised studies is needed. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Emilie Sbidian
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Clinical Investigation Centre, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Anna Chaimani
- Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), INSERM, F-75004, Paris, France
- Cochrane France, Paris, France
| | - Robin Guelimi
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Ignacio Garcia-Doval
- Department of Dermatology, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Camille Hua
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Carolyn Hughes
- c/o Cochrane Skin Group, The University of Nottingham, Nottingham, UK
| | - Luigi Naldi
- Centro Studi GISED (Italian Group for Epidemiologic Research in Dermatology) - FROM (Research Foundation of Ospedale Maggiore Bergamo), Padiglione Mazzoleni - Presidio Ospedaliero Matteo Rota, Bergamo, Italy
| | - Maria Kinberger
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sivem Afach
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Laurence Le Cleach
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| |
Collapse
|
4
|
Hsieh TS, Tsai TF. Combination Therapy for Psoriasis with Methotrexate and Other Oral Disease-Modifying Antirheumatic Drugs: A Systematic Review. Dermatol Ther (Heidelb) 2023; 13:891-909. [PMID: 36943580 DOI: 10.1007/s13555-023-00903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION Although the introduction of biologics and targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs) has reshaped the treatment paradigm for immune-mediated inflammatory diseases (IMIDs) such as psoriasis, oral conventional synthetic DMARDs (csDMARDs) remain the cornerstone in their treatment. Combinational use of DMARDs is common in rheumatological practice, but for the treatment of many skin diseases, dermatologists typically use a single oral DMARD, with methotrexate (MTX) being the most commonly prescribed csDMARD for psoriasis. METHODS To better understand the potential benefits of MTX combination therapy in psoriasis, a literature review was conducted using Medline (PubMed), Embase, Web of Science, and the Cochrane Library, covering articles published from inception until October 2022. Randomized controlled trials, cohort, open-label, and observational studies, and case reports with efficacy and safety results for combination therapy with MTX, csDMARDs, and tsDMARDs or comparisons between MTX monotherapy and combination therapy with other oral DMARDs in psoriasis were included. Studies involving MTX monotherapy alone or sequential treatment with MTX and other oral DMARDs were excluded, as were non-English articles. The results are presented as a systematic review, and the risk of bias was assessed by the corresponding author using the Cochrane Handbook for Systematic Reviews of Interventions, version 6.3, and confirmed by an independent assessor. RESULTS Eleven studies comprising 494 participants were included in the review. Overall, combination treatment with MTX and other oral DMARDs exhibited good efficacy and tolerability in psoriasis. However, the included studies were primarily small scale or retrospective, and larger prospective randomized trials are needed to provide stronger evidence. CONCLUSION This literature review suggests that combination therapy with MTX and csDMARDs may serve as an efficacious treatment for psoriasis patients with an inadequate response to oral DMARD monotherapy.
Collapse
Affiliation(s)
- Tyng-Shiuan Hsieh
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Road, Taipei, Taiwan.
| |
Collapse
|
5
|
van Huizen AM, Sikkel R, Caron AGM, Menting SP, Spuls PI. Methotrexate Dosing Regimen for Plaque-type Psoriasis: An Update of a Systematic Review. J DERMATOL TREAT 2022; 33:3104-3118. [PMID: 36043844 DOI: 10.1080/09546634.2022.2117539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Methotrexate (MTX) is a systemic treatment for plaque-type psoriasis. At the time of approval, no dose-ranging studies were performed. Nowadays, a uniform dosing regimen is lacking. This might contribute to suboptimal treatment with the drug.Objective To summarize the literature involving the MTX dosing regimens in psoriasis patients.Methods In this SR, RCTs and documents with aggregated evidence (AgEv) on the MTX dosing regimen in psoriasis were summarized. All randomized controlled trials (RCTs) in which oral, subcutaneous or intramuscular MTX was used in patients with psoriasis and AgEv, were included. The MEDLINE, EMBASE and CENTRAL databases were searched up to June 20, 2022. This SR was registered in PROSPERO.Results Thirty-nine RCTs had a high risk of bias. Test dosages were given in only 3 RCTs. In the RCTs, MTX was usually prescribed in a start dose of 7.5 mg/week (n = 13). MTX was mostly given in a start dose of 15 mg/week, in the AgEv (n = 5). One guideline recommended a test dose, in other aggregated evidence a test dose was not mentioned or even discouraged.Conclusions There is a lack of high-quality evidence and available data for dosing MTX in psoriasis is heterogeneous.
Collapse
Affiliation(s)
- Astrid M van Huizen
- Amsterdam UMC, location University of Amsterdam, Department of Dermatology, Amsterdam Public Health, Infection and Immunity, Meibergdreef 9, Amsterdam, the Netherlands
| | - Rosie Sikkel
- Amsterdam UMC, location University of Amsterdam, Department of Dermatology, Amsterdam Public Health, Infection and Immunity, Meibergdreef 9, Amsterdam, the Netherlands
| | - Anouk G M Caron
- Amsterdam UMC, location University of Amsterdam, Department of Dermatology, Amsterdam Public Health, Infection and Immunity, Meibergdreef 9, Amsterdam, the Netherlands
| | - Stef P Menting
- OLVG hospital, Department of Dermatology, Amsterdam, the Netherlands
| | - Phyllis I Spuls
- Amsterdam UMC, location University of Amsterdam, Department of Dermatology, Amsterdam Public Health, Infection and Immunity, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Sbidian E, Chaimani A, Garcia-Doval I, Doney L, Dressler C, Hua C, Hughes C, Naldi L, Afach S, Le Cleach L. Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis. Cochrane Database Syst Rev 2022; 5:CD011535. [PMID: 35603936 PMCID: PMC9125768 DOI: 10.1002/14651858.cd011535.pub5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Psoriasis is an immune-mediated disease with either skin or joints manifestations, or both, and it has a major impact on quality of life. Although there is currently no cure for psoriasis, various treatment strategies allow sustained control of disease signs and symptoms. The relative benefit of these treatments remains unclear due to the limited number of trials comparing them directly head-to-head, which is why we chose to conduct a network meta-analysis. OBJECTIVES To compare the efficacy and safety of non-biological systemic agents, small molecules, and biologics for people with moderate-to-severe psoriasis using a network meta-analysis, and to provide a ranking of these treatments according to their efficacy and safety. SEARCH METHODS For this update of the living systematic review, we updated our searches of the following databases monthly to October 2021: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, and Embase. SELECTION CRITERIA Randomised controlled trials (RCTs) of systemic treatments in adults over 18 years with moderate-to-severe plaque psoriasis, at any stage of treatment, compared to placebo or another active agent. The primary outcomes were: proportion of participants who achieved clear or almost clear skin, that is, at least Psoriasis Area and Severity Index (PASI) 90; proportion of participants with serious adverse events (SAEs) at induction phase (8 to 24 weeks after randomisation). DATA COLLECTION AND ANALYSIS We conducted duplicate study selection, data extraction, risk of bias assessment and analyses. We synthesised data using pairwise and network meta-analysis (NMA) to compare treatments and rank them according to effectiveness (PASI 90 score) and acceptability (inverse of SAEs). We assessed the certainty of NMA evidence for the two primary outcomes and all comparisons using CINeMA, as very low, low, moderate, or high. We contacted study authors when data were unclear or missing. We used the surface under the cumulative ranking curve (SUCRA) to infer treatment hierarchy, from 0% (worst for effectiveness or safety) to 100% (best for effectiveness or safety). MAIN RESULTS This update includes an additional 19 studies, taking the total number of included studies to 167, and randomised participants to 58,912, 67.2% men, mainly recruited from hospitals. Average age was 44.5 years, mean PASI score at baseline was 20.4 (range: 9.5 to 39). Most studies were placebo-controlled (57%). We assessed a total of 20 treatments. Most (140) trials were multicentric (two to 231 centres). One-third of the studies (57/167) had high risk of bias; 23 unclear risk, and most (87) low risk. Most studies (127/167) declared funding by a pharmaceutical company, and 24 studies did not report a funding source. Network meta-analysis at class level showed that all interventions (non-biological systemic agents, small molecules, and biological treatments) showed a higher proportion of patients reaching PASI 90 than placebo. Anti-IL17 treatment showed a higher proportion of patients reaching PASI 90 compared to all the interventions, except anti-IL23. Biologic treatments anti-IL17, anti-IL12/23, anti-IL23 and anti-TNF alpha showed a higher proportion of patients reaching PASI 90 than the non-biological systemic agents. For reaching PASI 90, the most effective drugs when compared to placebo were (SUCRA rank order, all high-certainty evidence): infliximab (risk ratio (RR) 50.19, 95% CI 20.92 to 120.45), bimekizumab (RR 30.27, 95% CI 25.45 to 36.01), ixekizumab (RR 30.19, 95% CI 25.38 to 35.93), risankizumab (RR 28.75, 95% CI 24.03 to 34.39). Clinical effectiveness of these drugs was similar when compared against each other. Bimekizumab, ixekizumab and risankizumab showed a higher proportion of patients reaching PASI 90 than other anti-IL17 drugs (secukinumab and brodalumab) and guselkumab. Infliximab, anti-IL17 drugs (bimekizumab, ixekizumab, secukinumab and brodalumab) and anti-IL23 drugs (risankizumab and guselkumab) except tildrakizumab showed a higher proportion of patients reaching PASI 90 than ustekinumab and three anti-TNF alpha agents (adalimumab, certolizumab and etanercept). Ustekinumab was superior to certolizumab; adalimumab and ustekinumab were superior to etanercept. No significant difference was shown between apremilast and two non-biological drugs: ciclosporin and methotrexate. We found no significant difference between any of the interventions and the placebo for the risk of SAEs. The risk of SAEs was significantly lower for participants on methotrexate compared with most of the interventions. Nevertheless, the SAE analyses were based on a very low number of events with low- to moderate-certainty for all the comparisons (except methotrexate versus placebo, which was high-certainty). The findings therefore have to be viewed with caution. For other efficacy outcomes (PASI 75 and Physician Global Assessment (PGA) 0/1), the results were similar to the results for PASI 90. Information on quality of life was often poorly reported and was absent for several of the interventions. AUTHORS' CONCLUSIONS Our review shows that, compared to placebo, the biologics infliximab, bimekizumab, ixekizumab, and risankizumab were the most effective treatments for achieving PASI 90 in people with moderate-to-severe psoriasis on the basis of high-certainty evidence. This NMA evidence is limited to induction therapy (outcomes measured from 8 to 24 weeks after randomisation), and is not sufficient for evaluating longer-term outcomes in this chronic disease. Moreover, we found low numbers of studies for some of the interventions, and the young age (mean 44.5 years) and high level of disease severity (PASI 20.4 at baseline) may not be typical of patients seen in daily clinical practice. We found no significant difference in the assessed interventions and placebo in terms of SAEs, and the safety evidence for most interventions was low to moderate quality. More randomised trials directly comparing active agents are needed, and these should include systematic subgroup analyses (sex, age, ethnicity, comorbidities, psoriatic arthritis). To provide long-term information on the safety of treatments included in this review, an evaluation of non-randomised studies and postmarketing reports from regulatory agencies is needed. Editorial note: This is a living systematic review. Living systematic reviews offer a new approach to review updating, in which the review is continually updated, incorporating relevant new evidence as it becomes available. Please refer to the Cochrane Database of Systematic Reviews for the current status of this review.
Collapse
Affiliation(s)
- Emilie Sbidian
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Clinical Investigation Centre, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Anna Chaimani
- Université de Paris, Centre of Research in Epidemiology and Statistics (CRESS), INSERM, F-75004, Paris, France
- Cochrane France, Paris, France
| | - Ignacio Garcia-Doval
- Department of Dermatology, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | - Liz Doney
- Cochrane Skin, Centre of Evidence Based Dermatology, University of Nottingham, Nottingham, UK
| | - Corinna Dressler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Camille Hua
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Carolyn Hughes
- c/o Cochrane Skin Group, The University of Nottingham, Nottingham, UK
| | - Luigi Naldi
- Centro Studi GISED (Italian Group for Epidemiologic Research in Dermatology) - FROM (Research Foundation of Ospedale Maggiore Bergamo), Padiglione Mazzoleni - Presidio Ospedaliero Matteo Rota, Bergamo, Italy
| | - Sivem Afach
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| | - Laurence Le Cleach
- Department of Dermatology, Hôpital Henri Mondor, Créteil, France
- Epidemiology in Dermatology and Evaluation of Therapeutics (EpiDermE) - EA 7379, Université Paris Est Créteil (UPEC), Créteil, France
| |
Collapse
|
7
|
Agarwal US, Mathur R, Agarwal P. Combination therapy of immunosuppressants in dermatology: A new concept. Indian J Dermatol Venereol Leprol 2021; 88:531. [PMID: 34491682 DOI: 10.25259/ijdvl_680_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Uma Shankar Agarwal
- Department of Skin, V.D. and Leprosy, S.M.S. Medical College, Jaipur, Rajasthan, India
| | - Rachita Mathur
- Department of Skin, V.D. and Leprosy, S.M.S. Medical College, Jaipur, Rajasthan, India
| | - Puneet Agarwal
- Department of Skin, V.D. and Leprosy, S.M.S. Medical College, Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Singh SK, Singnarpi SR. Authors' reply. Indian J Dermatol Venereol Leprol 2021; 88:532. [PMID: 34491683 DOI: 10.25259/ijdvl_777_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 11/04/2022]
Affiliation(s)
- Satyendra Kumar Singh
- Department of Dermatology and Venereology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sermili Rini Singnarpi
- Department of Dermatology and Venereology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|