3
|
Yuan C, Yu XT, Wang J, Shu B, Wang XY, Huang C, Lv X, Peng QQ, Qi WH, Zhang J, Zheng Y, Wang SJ, Liang QQ, Shi Q, Li T, Huang H, Mei ZD, Zhang HT, Xu HB, Cui J, Wang H, Zhang H, Shi BH, Sun P, Zhang H, Ma ZL, Feng Y, Chen L, Zeng T, Tang DZ, Wang YJ. Multi-modal molecular determinants of clinically relevant osteoporosis subtypes. Cell Discov 2024; 10:28. [PMID: 38472169 PMCID: PMC10933295 DOI: 10.1038/s41421-024-00652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/14/2024] Open
Abstract
Due to a rapidly aging global population, osteoporosis and the associated risk of bone fractures have become a wide-spread public health problem. However, osteoporosis is very heterogeneous, and the existing standard diagnostic measure is not sufficient to accurately identify all patients at risk of osteoporotic fractures and to guide therapy. Here, we constructed the first prospective multi-omics atlas of the largest osteoporosis cohort to date (longitudinal data from 366 participants at three time points), and also implemented an explainable data-intensive analysis framework (DLSF: Deep Latent Space Fusion) for an omnigenic model based on a multi-modal approach that can capture the multi-modal molecular signatures (M3S) as explicit functional representations of hidden genotypes. Accordingly, through DLSF, we identified two subtypes of the osteoporosis population in Chinese individuals with corresponding molecular phenotypes, i.e., clinical intervention relevant subtypes (CISs), in which bone mineral density benefits response to calcium supplements in 2-year follow-up samples. Many snpGenes associated with these molecular phenotypes reveal diverse candidate biological mechanisms underlying osteoporosis, with xQTL preferences of osteoporosis and its subtypes indicating an omnigenic effect on different biological domains. Finally, these two subtypes were found to have different relevance to prior fracture and different fracture risk according to 4-year follow-up data. Thus, in clinical application, M3S could help us further develop improved diagnostic and treatment strategies for osteoporosis and identify a new composite index for fracture prediction, which were remarkably validated in an independent cohort (166 participants).
Collapse
Affiliation(s)
- Chunchun Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai, China
| | - Bing Shu
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Yun Wang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Chen Huang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xia Lv
- Hudong Hospital of Shanghai, Shanghai, China
| | - Qian-Qian Peng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wen-Hao Qi
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Zhang
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yan Zheng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Si-Jia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Qian Liang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - He Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Zhen-Dong Mei
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hai-Tao Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Bin Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jiarui Cui
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Bin-Hao Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Pan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hui Zhang
- Hudong Hospital of Shanghai, Shanghai, China
| | | | - Yuan Feng
- Green Valley (Shanghai) Pharmaceuticals Co., Ltd., Shanghai, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Tao Zeng
- Guangzhou National Laboratory, Guangzhou, China.
| | - De-Zhi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Yong-Jun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, China.
- Spine Institute, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
4
|
Richards T, Stephen J, Lui CL. Severe disseminated Veillonella parvula infection including endocarditis, bilateral psoas abscess, discitis, and osteomyelitis but sparing spinal and hip prostheses: a case report. J Med Case Rep 2022; 16:157. [PMID: 35440093 PMCID: PMC9020012 DOI: 10.1186/s13256-022-03386-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/23/2022] [Indexed: 11/11/2022] Open
Abstract
Background Veillonella species are an opportunistically pathogenic commensal anaerobic Gram-negative coccus commonly found in the oral, genitourinary, respiratory, and intestinal tract of humans and some animals. Infection is rare, even in immunocompromised hosts, and has been identified to cause a wide array of different infections, including endocarditis, osteomyelitis, and meningitis. Case presentation An 82-year-old Caucasian male retired ex-gymnast presented to the emergency department with a 2-week history of acute on chronic lower back pain without clear precipitant. He displayed no systemic symptoms, and had not sustained any recent injuries. Initial blood and radiological investigation did not reveal an infective or mechanical cause for his pain; however, a few days into admission, he developed a fever and signs of sepsis. A thorough septic screen was performed, including a spinal magnetic resonance imaging scan, which did not reveal any abnormalities. Blood cultures revealed Veillonella parvula bacteremia, with subsequently repeated magnetic resonance imaging displaying rapid disseminated infection including bilateral psoas abscess, discitis, and osteomyelitis. Infective endocarditis was later identified with echocardiogram. He received intravenous ceftriaxone and later oral amoxicillin and clavulanic and recovered on 6-month follow-up. Conclusions This case illustrates the potential pathogenicity and unexpected rapid course of Veillonella parvula infection even in an immunocompetent host presenting with back pain. This case highlights the critical importance of a thorough septic screen when investigating patients for early signs of sepsis.
Collapse
Affiliation(s)
- Tobias Richards
- Geriatric Medicine, St John of God Midland Public and Private Hospitals, 1 Clayton St, Midland, WA, 6056, Australia.
| | - Juan Stephen
- Geriatric Medicine, St John of God Midland Public and Private Hospitals, 1 Clayton St, Midland, WA, 6056, Australia
| | - Chok Lin Lui
- Geriatric Medicine, St John of God Midland Public and Private Hospitals, 1 Clayton St, Midland, WA, 6056, Australia
| |
Collapse
|