1
|
Pistán ME, Cook D, Gutiérrez SA, Schnittger L, Gardner DR, Cholich LA, Gonzalez AM. Identification and distribution of a fungal endosymbiotic Alternaria species ( Alternaria section Undifilum sp.) in Astragalus garbancillo tissues. Mycologia 2024; 116:291-298. [PMID: 38294503 DOI: 10.1080/00275514.2023.2299191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024]
Abstract
Plants belonging to the genera Astragalus, Oxytropis, Ipomoea, Sida, and Swainsona often contain the toxin swainsonine (SW) produced by an associated fungal symbiont. Consumption of SW-containing plants causes a serious neurological disorder in livestock, which can be fatal. In this study, a fungal endophyte, Alternaria section Undifilum, was identified in Astragalus garbancillo seeds, using polymerase chain reaction (PCR) followed by direct sequencing. In seeds, the SW concentrations were about 4 times higher than in other parts of the plant. Furthermore, microscopic examination demonstrated that the fungus mycelium grows inside the petioles and stems, on the outer surface and inside the mesocarp of the fruit, in the mesotesta and endotesta layers of the seed coat, and inside the endosperm of the seeds. Our results support the notion that the SW-producing fungus is vertically transmitted in the host plant A. garbancillo.
Collapse
Affiliation(s)
- María E Pistán
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400, Argentina
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, Utah 84341
| | - Susana A Gutiérrez
- Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Leonhard Schnittger
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400, Argentina
- Instituto de Patobiología Veterinaria, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham 1686, Argentina
| | - Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, United States Department of Agriculture, Logan, Utah 84341
| | - Luciana A Cholich
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Nordeste, Corrientes 3400, Argentina
| | - Ana M Gonzalez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Corrientes 3400, Argentina
- Instituto de Botánica del Nordeste, Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (IBONE-CONICET-UNNE), Corrientes 3400, Argentina
| |
Collapse
|
2
|
Fu K, Schardl CL, Cook D, Cao X, Ling N, He C, Wu D, Xue L, Li Y, Shi Z. Multiomics Reveals Mechanisms of Alternaria oxytropis Inhibiting Pathogenic Fungi in Oxytropis ochrocephala. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2397-2409. [PMID: 38230662 DOI: 10.1021/acs.jafc.3c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.
Collapse
Affiliation(s)
- Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Xuanli Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunyu He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
The Influence of Packaging on Palatability and Shelf Life Stability of Horse Treats. J Equine Vet Sci 2020; 98:103326. [PMID: 33663712 DOI: 10.1016/j.jevs.2020.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Horse treat packaging may be composed of materials including plastic and paper which protect the product from the environment to improve shelf life. Objectives of this research were to 1) assess the impact of packaging on shelf life of horse treats and 2) evaluate the impact of packaging on horse preferences. Three packaging treatments (control, poly, and paper) were examined at five time points over a 12 month period. Treatments were analyzed for moisture, water activity, mold, yeast, pH, and volatile organic acids. Horse preference testing evaluated first treatment sniffed, consumed, and finished as well as number of treats consumed. Significance was set at P < .05 and trends at P < .10. Moisture content and water activity increased in all treatments (P < .01) from month 0 to month 12, with paper packaging providing a greater fluctuation and containing visible mold at month 12 (P < .01). No difference was observed for first treatment sniffed, consumed, or finished during preference testing. However a trend (P = .09) for the period∗treatment interaction was observed for number of treats consumed, with poly increasing while paper decreased. These data indicate that packaging impacts shelf life and horse preference of treats.
Collapse
|
4
|
The Influence of Topically Applied Oil–Based Palatants on Eating Behavior in Horses. J Equine Vet Sci 2020; 91:102995. [DOI: 10.1016/j.jevs.2020.102995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 11/21/2022]
|
5
|
Boschetti E, Hernández-Castellano LE, Righetti PG. Progress in farm animal proteomics: The contribution of combinatorial peptide ligand libraries. J Proteomics 2019; 197:1-13. [DOI: 10.1016/j.jprot.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
|
6
|
Martin LM, Bukoski AD, Whelchel DD, Evans TJ, Wiedmeyer CE, Black SJ, Johnson PJ. Pharmacokinetics of intravenous lithium chloride and assessment of agreement between two methods of lithium concentration measurement in the horse. Equine Vet J 2017; 50:537-543. [PMID: 29112289 DOI: 10.1111/evj.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/29/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pharmacokinetics of lithium chloride (LiCl) administered as a bolus, once i.v. have not been determined in horses. There is no point-of-care test to measure lithium (Li+ ) concentrations in horses in order to monitor therapeutic levels and avoid toxicity. OBJECTIVES To determine the pharmacokinetics of LiCl in healthy adult horses and to compare agreement between two methods of plasma Li+ concentration measurement: spectrophotometric enzymatic assay (SEA) and inductively coupled plasma mass spectrometry (ICP-MS). STUDY DESIGN Nonrandomised, single exposure with repeated measures over time. METHODS Lithium chloride was administered (0.15 mmol/kg bwt) as an i.v. bolus to eight healthy adult horses. Blood samples were collected pre-administration and at multiple times until 48 h post-administration. Samples were analysed by two methods (SEA and ICP-MS) to determine plasma Li+ concentrations. Pharmacokinetics were determined based on the reference ICP-MS data. RESULTS Adverse side effects were not observed. The SEA showed linearity, R2 = 0.9752; intraday coefficient of variation, 2.5%; and recovery, 96.3%. Both noncompartmental and compartmental analyses (traditional two-stage and nonlinear mixed-effects [NLME] modelling) were performed. Geometric mean values of noncompartmental parameters were plasma Li+ concentration at time zero, 2.19 mmol/L; terminal elimination half-life, 25.68 h; area under the plasma concentration-time curve from time zero to the limit of quantification, 550 mmol/L min; clearance, 0.273 mL/min/kg; mean residence time, 31.22 h; and volume of distribution at steady state, 511 mL/kg. Results of the traditional two-stage analysis showed good agreement with the NLME modelling approach. Bland-Altman analyses demonstrated poor agreement between the SEA and ICP-MS methods (95% limits of agreement = 0.14 ± 0.13 mmol/L). MAIN LIMITATIONS Clinical effects of LiCl have not been investigated. CONCLUSIONS The LiCl i.v. bolus displayed pharmacokinetics similar to those reported in other species. The SEA displayed acceptable precision but did not agree well with the reference method (ICP-MS). The Summary is available in Spanish - see Supporting Information.
Collapse
Affiliation(s)
- L M Martin
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - A D Bukoski
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - D D Whelchel
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - T J Evans
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - C E Wiedmeyer
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - S J Black
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - P J Johnson
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
7
|
Poutaraud A, Michelot-Antalik A, Plantureux S. Grasslands: A Source of Secondary Metabolites for Livestock Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6535-6553. [PMID: 28704611 DOI: 10.1021/acs.jafc.7b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for environmentally friendly practices in animal husbandry, in conjunction with the reduction of the use of synthetic chemicals, leads us to reconsider our agricultural production systems. In that context, grassland secondary metabolites (GSMs) could offer an alternative way to support to livestock health. In fact, grasslands, especially those with high dicotyledonous plant species, present a large, pharmacologically active reservoir of secondary metabolites (e.g., phenolic compounds, alkaloids, saponins, terpenoids, carotenoids, and quinones). These molecules have activities that could improve or deteriorate health and production. This Review presents the main families of GSMs and uses examples to describe their known impact on animal health in husbandry. Techniques involved for their study are also described. A particular focus is put on anti-oxidant activities of GSMs. In fact, numerous husbandry pathologies, such as inflammation, are linked to oxidative stress and can be managed by a diet rich in anti-oxidants. The different approaches and techniques used to evaluate grassland quality for livestock health highlight the lack of efficient and reliable technics to study the activities of this complex phytococktail. Better knowledge and management of this animal health resource constitute a new multidisciplinary research field and a challenge to maintain and valorize grasslands.
Collapse
Affiliation(s)
- Anne Poutaraud
- Laboratoire Agronomie et Environnement, INRA , UMR 1121, Colmar, 29 rue de Herrlisheim, F-68021 Colmar Cedex, France
| | - Alice Michelot-Antalik
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| | - Sylvain Plantureux
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
8
|
Alkaloid-Containing Plants Poisonous to Cattle and Horses in Europe. Toxins (Basel) 2015; 7:5301-7. [PMID: 26670251 PMCID: PMC4690134 DOI: 10.3390/toxins7124884] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022] Open
Abstract
Alkaloids, nitrogen-containing secondary plant metabolites, are of major interest to veterinary toxicology because of their occurrence in plant species commonly involved in animal poisoning. Based on epidemiological data, the poisoning of cattle and horses by alkaloid-containing plants is a relatively common occurrence in Europe. Poisoning may occur when the plants contaminate hay or silage or when forage alternatives are unavailable. Cattle and horses are particularly at risk of poisoning by Colchicum autumnale (meadow saffron), Conium maculatum (poison hemlock), Datura stramonium (jimson weed), Equisetum palustre (marsh horsetail), Senecio spp. (ragwort and groundsel) and Taxus baccata (European yew). This review of poisonous alkaloid-containing plants describes the distribution of these plants, conditions under which poisoning occurs, active toxic principles involved and subsequent clinical signs observed.
Collapse
|
9
|
Abstract
This review of simple indolizidine and quinolizidine alkaloids (i.e., those in which the parent bicyclic systems are in general not embedded in polycyclic arrays) is an update of the previous coverage in Volume 55 of this series (2001). The present survey covers the literature from mid-1999 to the end of 2013; and in addition to aspects of the isolation, characterization, and biological activity of the alkaloids, much emphasis is placed on their total synthesis. A brief introduction to the topic is followed by an overview of relevant alkaloids from fungal and microbial sources, among them slaframine, cyclizidine, Steptomyces metabolites, and the pantocins. The important iminosugar alkaloids lentiginosine, steviamine, swainsonine, castanospermine, and related hydroxyindolizidines are dealt with in the subsequent section. The fourth and fifth sections cover metabolites from terrestrial plants. Pertinent plant alkaloids bearing alkyl, functionalized alkyl or alkenyl substituents include dendroprimine, anibamine, simple alkaloids belonging to the genera Prosopis, Elaeocarpus, Lycopodium, and Poranthera, and bicyclic alkaloids of the lupin family. Plant alkaloids bearing aryl or heteroaryl substituents include ipalbidine and analogs, secophenanthroindolizidine and secophenanthroquinolizidine alkaloids (among them septicine, julandine, and analogs), ficuseptine, lasubines, and other simple quinolizidines of the Lythraceae, the simple furyl-substituted Nuphar alkaloids, and a mixed quinolizidine-quinazoline alkaloid. The penultimate section of the review deals with the sizable group of simple indolizidine and quinolizidine alkaloids isolated from, or detected in, ants, mites, and terrestrial amphibians, and includes an overview of the "dietary hypothesis" for the origin of the amphibian metabolites. The final section surveys relevant alkaloids from marine sources, and includes clathryimines and analogs, stellettamides, the clavepictines and pictamine, and bis(quinolizidine) alkaloids.
Collapse
|
10
|
Affiliation(s)
- F. Caloni
- Department of Health, Animal Science and Food Safety (VESPA); Università degli Studi di Milano; Milan Italy
| | - C. Cortinovis
- Department of Health, Animal Science and Food Safety (VESPA); Università degli Studi di Milano; Milan Italy
| |
Collapse
|
11
|
Potential degradation of swainsonine by intracellular enzymes of Arthrobacter sp. HW08. Toxins (Basel) 2013; 5:2161-71. [PMID: 24240642 PMCID: PMC3847719 DOI: 10.3390/toxins5112161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 11/16/2022] Open
Abstract
Swainsonine (SW) is a toxin produced by locoweeds and harmful to the livestock industry. Degrading SW by Arthrobacter sp. HW08 was demonstrated as a promising way to deal with SW poisoning. However, it is unknown which part of the subcellular enzymes in Arthrobacter sp. HW08 is responsible for biodegrading SW and whether the metabolites are atoxic. In this study, intracellular and extracellular enzymes of Arthrobacter sp. HW08 were isolated and their enzyme activity was evaluated. The metabolites were fed to mice, and physiological and histological properties of the treated mice were investigated. The results showed that only intracellular enzyme of Arthrobacter sp. HW08 (IEHW08) could degrade SW efficiently. Compared with mice in SW treatment group, mice in SW + IEHW08 treatment group (1) increased their body weights; (2) showed higher number of platelets and lower number of white blood cells; (3) decreased the levels of creatinine, urea nitrogen, alanine transaminase and aspartate aminotransferase in serum; (4) reduced the number of vacuolated cells in cerebellum, liver and kidney. All these data demonstrate that IEHW08 was potentially safe for mice, while keeping the capacity of degrading SW. This study indicates a possible application of IEHW08 as an additive in the livestock industry to protect animals from SW poisoning.
Collapse
|
12
|
Huang Y, Li W, Zhao X, Ding L, Yu G, Dong F, Du Q, Xu X, Tong D. Swainsonine differentially affects steroidogenesis and viability in caprine luteal cells in vitro. Theriogenology 2013; 80:41-9. [PMID: 23639373 DOI: 10.1016/j.theriogenology.2013.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 11/17/2022]
Abstract
Plants containing swainsonine (SW) have been reported to impair reproductive function and fertility after long-term ingestion by livestock. However, direct effects of SW on luteal cell steroidogenesis remain unclear. In this study, primary and transfected luteal cells were used to investigate the effects of SW on progesterone secretion and cell viability and the mechanisms involved in these processes. After treatment with various concentrations of SW for 24 or 48 hours, progesterone production and the number of living cells were assessed using radioimmunoassay and trypan blue dye exclusion assay, respectively. Lower concentrations of SW enhanced basal, 22R-hydroxycholesterol- or pregnenolone-stimulated progesterone secretion (P < 0.05), whereas higher concentrations of SW inhibited progesterone secretion (P < 0.05). Lower concentrations of SW promoted expression of P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase, two key enzymes involved in luteal cell steroidogenesis, at mRNA and protein levels (P < 0.05), but did not affect expression of steroidogenic acute regulatory protein and cell proliferation. In contrast, higher concentrations of SW inhibited luteal cell proliferation by inducing growth phase 1/quiescent state cell cycle arrest and apoptosis (P < 0.05). Taken together, these results demonstrated that lower concentrations of SW induced progesterone production through upregulation of P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase without affecting cell viability, whereas higher concentrations of SW induced cell cycle arrest and apoptosis and impaired steroidogenesis. These findings provided new insights into understanding the effect of SW on luteal cell steroidogenesis.
Collapse
Affiliation(s)
- Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal 2012; 6:118-36. [DOI: 10.1017/s1751731111001315] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
14
|
Ginane C, Dumont B. Do sheep (Ovis aries) categorize plant species according to botanical family? Anim Cogn 2011; 14:369-76. [DOI: 10.1007/s10071-010-0371-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 11/29/2022]
|
15
|
|