1
|
Chemical body composition and bone growth of young pigs as affected by deficiency, adequate and excess of dietary phosphorus supply. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Objective of the experiment was to study the effect of deficiency, adequate and excess dietary phosphorus supply on growth performance, retention and utilisation of phosphorus, length, mass and geometry measurements of the femur shaft, content of protein, ash, phosphorus in viscera, edible (meat and fat) and inedible (bones and skin) parts of the body in pigs ageing from 33 to 110 days. It was found that compared to animals fed according to phosphorus requirement the deficiency and excess of dietary phosphorus did not influenced o total feed intake (mean 120.6 kg) and feed conversion (mean 1.9 kg/kg gain). However phosphorus deficiency lowered total gain of the body mass (P=0.0072), diminished weight of the inedible part of the carcass (P=0.0229), decreased the content of body protein (P=0.0171), ash (P=0.0001), and phosphorus (P=0.0001). Whereas, over-supply of dietary phosphorus did not cause any change of these component. Utilisation of the total phosphorus was diminished (P=0.0001) in pigs fed diet with both excess (by 16.26%) and deficiency (by 12.28%) of the phosphorus, but excess had much lower negative impact than its’ deficiency. When available form of this element was considered over-supply still reduced (P=0.0001) its utilisation the most (by 26.58%) but deficiency made utilisation the best (7.77%). Both dietary deficiency and over-supply of the phosphorus diminished (P=0.0001) femur mass (by 25 and 11 g, respectively). Thus negative impact of phosphorus deficiency was much stronger. Moreover, phosphorus deficiency diminished (P=0.0015) bone length (by 0.5 cm), however, excess did not change this feature. Response of animals to a decrease bone mass and length due disturbances in phosphorus supply (both deficiency and excess) was the increase the vertical external diameter of the femur shaft.
Collapse
|
2
|
Fabà L, Gasa J, Tokach MD, Font-i-Furnols M, Vilarrasa E, Solà-Oriol D. Effects of additional organic micro-minerals and methionine on carcass composition, gait score, bone characteristics, and osteochondrosis in replacement gilts of different growth rate. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Sung J, Kim B. Prediction models for apparent and standardized total tract digestible phosphorus in swine diets. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Acosta JA, Patience JF. Insoluble dietary fiber does not affect the ability of phytase to release phosphorus from phytate in the diet of nursery pigs1. J Anim Sci 2019; 97:3451-3459. [PMID: 31190064 PMCID: PMC6667262 DOI: 10.1093/jas/skz194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
Phytase is added to swine diets to improve the utilization of phytate-bound P in swine diets. This provides financial and environmental benefits to the pig industry. However, it is unclear if phytase works equally well in all dietary circumstances. The objective of this experiment was to determine if insoluble fiber affects the efficacy of the phytase enzyme in nursery pigs when fed diets limiting in P content. A total of 480 pigs (initial BW 5.48 ± 0.14 kg) were blocked by BW and randomly assigned (10 pigs per pen) to treatment within the block. A common nutrient-adequate diet was fed from days -14 to -5, and two basal P deficient diets (either a corn-soy diet containing 0.16% standardized total tract digestible [STTD] P [low insoluble fiber [LF]], or a corn-soybean meal plus 20% corn bran containing 0.14% STTD P [high insoluble fiber [HF]]) were fed from days -5 to 0 to acclimate pigs to a P deficient diet. From days 0 to 21, pigs received eight dietary treatments (six pens per treatment: n = 6). Experimental diets consisted of LF supplemented with one of four levels of added phytase (0, 109, 218, and 327 phytase units [FTU]/kg; Quantum Blue 5 G, AB Vista, Wiltshire, United Kingdom) expected to provide 0.16, 0.21, 0.26, and 0.31% STTD P, respectively, or HF supplemented with one of the same four levels of added phytase expected to provide 0.14, 0.19, 0.24, and 0.29% STTD P. Titanium dioxide was added to the diet at 0.4% as an indigestible marker. On day 21, one pig representing the average BW for each pen was euthanized, and fibulae were collected and analyzed for bone ash. Fecal samples were collected from each pen on days 19-20. Data were analyzed using PROC MIXED of SAS. There were no interactions between insoluble fiber and phytase for any of the variables evaluated. For days 0-21, adding phytase increased ADG (P < 0.001) with the response being linear (P < 0.001), whereas insoluble fiber decreased ADG (P = 0.033). There were no effects of phytase or insoluble fiber on ADFI (P = 0.381 and P = 0.632, respectively). Phytase improved G:F ratio (P < 0.001) with the response being linear (P < 0.001). Insoluble fiber tended to decrease G:F ratio (P = 0.097). Phytase increased bone ash (P = 0.005) with the response being linear (P = 0.001), but there was no effect of insoluble fiber (P = 0.949). Phytase did not affect the apparent total tract digestibility of DM, NDF, or ADF (P > 0.050), whereas insoluble fiber decreased the ATTD of DM (P < 0.001), NDF (P < 0.001), and ADF (P < 0.001). In conclusion, the addition of insoluble fiber did not affect the ability of phytase to improve growth performance and bone mineralization in nursery pigs fed a P deficient diet.
Collapse
Affiliation(s)
- Jesus A Acosta
- Department of Animal Science, Iowa State University, Ames, IA
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA
| |
Collapse
|
5
|
Sørensen KU, Kruger MC, Hansen-Møller J, Poulsen HD. Bone biochemical markers for assessment of bone responses to differentiated phosphorus supply in growing-finishing pigs. J Anim Sci 2019; 96:4693-4703. [PMID: 30085053 DOI: 10.1093/jas/sky311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022] Open
Abstract
Phosphorus (P) is essential for building and maintaining a healthy and strong skeleton. Moreover, dietary P supply may play a role for bone turnover, and the excretion of bone turnover metabolites may be useful as markers for sufficient dietary P supply. The objective was to study the long-term effects of low, medium, and high dietary P supply on bone metabolism in terms of serum concentration and urinary excretion of bone turnover components and metabolites in healthy growing-finishing pigs compared with bone mineral content (BMC) and bone mineral density (BMD) of humerus and femur. Pigs were fed diets containing low [LP; 4.1 g/kg dry matter (DM)], medium (MP; 6.2 g/kg DM), or high dietary P (HP; 8.9 g/kg DM) from 39.7 kg body weight (BW) until slaughter at 110 kg BW. Urine and blood were collected at 40, 70, and 110 kg BW while bones were collected at slaughter. Serum was analyzed for osteocalcin (OC), bone alkaline phosphatase (BAP), and C-terminal telopeptides of type I collagen (CTX-I), whereas urine was analyzed for pyridinoline (PYD), deoxypyridinoline (DPD), CTX-I, hydroxylysine (HYL), galactosyl-hydroxylysine (GAL-HYL), glycosyl-galactosyl-hydroxylysine (GLC-GAL-HYL), and hydroxyproline (HYP). Humerus and femur were analyzed for BMC and BMD. The LP diet caused reduced OC and increased BAP and CTX-I concentrations in serum. Furthermore, BAP was increased in response to the HP diet. Urine metabolites of bone resorption were all increased in pigs fed the LP diet, but only a few responses were obtained in response to the HP diet. Furthermore, age-related decreases were identified for BAP, HYL, GAL-HYL, and GLC-GAL-HYL. Bone mineral content and BMD were markedly lowered in pigs fed the LP diet but were not affected in pigs fed the HP diet. In conclusion, OC, BAP, and CTX-I in serum have proved useful for P adequacy in growing-finishing pigs. In addition, urine bone resorption metabolites have also proved useful for P adequacy and analysis of PYD, DPD, and CTX-I was considered to be the most relevant markers due to their specificity for bone and their negative correlation with BMD, BMC, ash, calcium (Ca), and P contents. Finally, DPD may be the preferred marker in long-term P feeding assessments.
Collapse
Affiliation(s)
| | - Marlena C Kruger
- School of Health Sciences, Massey University, Palmerston North, New Zealand
| | | | - Hanne D Poulsen
- Department of Animal Science, Aarhus University, Tjele, Denmark
| |
Collapse
|
6
|
The effect of microbial phytase supplementation of sorghum-canola meal diets with no added inorganic phosphorus on growth performance, apparent total-tract phosphorus, calcium, nitrogen and energy utilization, bone measurements, and serum variables of growing and finishing swine. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Effects of dietary calcium levels on growth performance and bone characteristics in pigs in grower-finisher-transitional phase. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2016.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Skiba G, Sobol M, Raj S. Femur morphometry, densitometry, geometry and mechanical properties in young pigs fed a diet free of inorganic phosphorus and supplemented with phytase. Arch Anim Nutr 2016; 71:81-92. [PMID: 27841665 DOI: 10.1080/1745039x.2016.1250542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The study investigated in piglets the effect of replacing dietary inorganic P by addition of microbial phytase and its impact on performance, nutrient digestibility and on the geometrical characteristics and mineralisation of the femur. Sixteen pigs on day 58 of age were divided into two groups and fed either a diet free of additional inorganic phosphorus (P) and supplemented with phytase (Diet LP, 4.23 g total P/kg diet) or a diet with a mineral source of P and not supplemented with phytase (Diet SP, 5.38 g total P/kg diet). Performance data and the apparent total tract digestibility of nutrients were estimated between days 58 and 114, and 72 and 86 of age, respectively. On day 114 of age, the pigs were slaughtered, the femur was dissected and the mineral content and mineral density, maximum strength and maximum elastic strength, cortical wall thickness, cross-sectional area and cortical index were analysed. The growth performance and digestibility of nutrient fractions (with exception of P) did not differ between treatment groups. The P-digestibility was significantly higher in Group LP. The femur of pigs in Group LP had significantly greater cortical wall thickness, cortical index, bone mineral content, bone mineral density, maximum strength and maximum elastic strength than Group SP. Femur maximum strength and maximum elastic strength were correlated with cortical wall thickness and cortical index. Resulting from the different supply of digestible P, the femur geometrical, densitometric and mechanical properties of Group LP were better than those of Group SP. The mechanical properties of the femur of pigs depended more on its geometrical characteristics than on the degree of its mineralisation.
Collapse
Affiliation(s)
- Grzegorz Skiba
- a Department of Protein and Energy Metabolism , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jabłonna , Poland
| | - Monika Sobol
- a Department of Protein and Energy Metabolism , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jabłonna , Poland
| | - Stanisława Raj
- a Department of Protein and Energy Metabolism , The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences , Jabłonna , Poland
| |
Collapse
|
9
|
Lu H, Preynat A, Legrand-Defretin V, Geraert P, Adeola O, Ajuwon K. Effects of dietary supplementation of exogenous multi-enzyme mixture containing carbohydrases and phytase on growth performance, energy and nutrient digestibility, and selected mucosal gene expression in the small intestine of weanling pigs fed nutrient deficient diets. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effect of carbohydrases and phytase supplementation on growth performance, nutrient utilization and gut health of nursery pigs was evaluated. Pigs were blocked by body weight (BW) and sex and allocated to four treatments. Treatments were a positive control (PC), a negative control (NC) deficient in metabolizable energy (ME), crude protein (CP), Ca, and non-phytate P (nPP), NC plus Rovabio® Max AP enzyme mix, at 0.05 and 0.075 g kg−1. Apparent total tract digestibility (ATTD) was determined in faecal samples. Apparent ileal digestibility (AID) was determined in ileal digesta samples collected after euthanasia. Lower final BW and average daily gain (ADG) (P < 0.05) were observed in NC compared with PC. Enzyme at 0.05 g kg−1increased (P < 0.05) BW on d 14 and d 41, respectively, and also increased ADG. Enzyme at 0.075 g kg−1increased BW on d 14 and ADG on d 0 to d 14 (P < 0.05). Feed efficiency [gain to feed ratio (G:F)] was greater (P < 0.05) in PC than NC from d 15 to d 41 and from d 0 to d 41. No difference in G:F was observed with enzyme supplementation. Higher (P < 0.05) serum Ca and bone ash were observed in PC than NC. Enzyme increased the ATTD of Ca and P (P < 0.05) compared with NC.
Collapse
Affiliation(s)
- H. Lu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - A. Preynat
- Adisseo France SAS, Antony Parc II, 10 Place du Général de Gaulle, 92160 Antony, France
| | - V. Legrand-Defretin
- Adisseo France SAS, Antony Parc II, 10 Place du Général de Gaulle, 92160 Antony, France
| | - P.A. Geraert
- Adisseo France SAS, Antony Parc II, 10 Place du Général de Gaulle, 92160 Antony, France
| | - O. Adeola
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - K.M. Ajuwon
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Veum TL, Raboy V. Hulled and hull-less barley grains with the genetic trait for low-phytic acid increased the apparent total-tract digestibility of phosphorus and calcium in diets for young swine. J Anim Sci 2016; 94:1000-11. [PMID: 27065262 DOI: 10.2527/jas.2015-9994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A 35-d experiment was conducted using 63 crossbred pigs (35 barrows and 28 gilts) with an initial average BW of 7.0 kg and age of 28 d to evaluate the efficacy of the low-phytic acid (LPA) genetic trait in hulled or hull-less barley in isocaloric diets. Hulled barleys were the normal barley (NB) cultivar Harrington and the near-isogenic LPA mutant 955 (M955) with P availabilities of 36 and 95%, respectively. Hull-less lines were produced by crossing NB and the LPA mutant 422 line with a hull-less line, producing hull-less NB (HNB) and hull-less mutant 422 (HM422) with P availabilities of 41 and 66%, respectively. Pigs were in individual metabolism cages or pens for Phase 1 (d 0 to 14) and Phase 2 (d 14 to 35). Diets defined as NB, HNB, HM422, or M955 with no added inorganic P (iP) had available P (aP) concentrations of 0.27, 0.28, 0.35, and 0.40% for Phase 1 and 0.15, 0.17, 0.23, and 0.31% for Phase 2, respectively. Only diet M955 was adequate in aP. Therefore, iP was added to the P-deficient diets to make diets NB + iP, HNB + iP, and HM422 + iP with aP equal to that in diet M955. Overall (d 0 to 35), ADG and G:F were greater ( < 0.01) for pigs fed diet M955 or the diets with added iP than for pigs fed the NB diet. Serum tartrate-resistant acid phosphatase activity on d 34 was greater ( < 0.01) for pigs fed the NB or HNB diets than for pigs fed the other diets. Bone breaking strength and P absorption (g/d) were greater ( < 0.01) for pigs fed diet M955 or the diets with iP than for pigs fed the NB or HNB diets. Pigs fed diet M955 absorbed greater ( < 0.01) percentages of P and Ca and had less ( < 0.01) fecal excretion of P (g/d and %) and Ca (%) than pigs fed the other diets. In conclusion, the LPA genetic trait was effective in hulled and hull-less barley in isocaloric diets fed to young pigs. Pigs fed the diet with LPA M955 consumed 31% less P and excreted 78% less fecal P and 30% less fecal Ca than pigs fed the diet with NB + iP that was equal to diet M955 in aP. Therefore, LPA barley, especially M955 with 95% aP, will reduce the use of iP in swine diets, reduce P pollution from swine manure, and support the goal of achieving global P sustainability.
Collapse
|
11
|
Zeng Z, Li Q, Tian Q, Zhao P, Xu X, Yu S, Piao X. Super High Dosing with a Novel Buttiauxella Phytase Continuously Improves Growth Performance, Nutrient Digestibility, and Mineral Status of Weaned Pigs. Biol Trace Elem Res 2015; 168:103-9. [PMID: 25860427 DOI: 10.1007/s12011-015-0319-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
This study was conducted to evaluate the efficacy of a novel Buttiauxella phytase to pigs fed P-deficient, corn-soybean meal diets. One hundred and twenty crossbred piglets (9.53 ± 0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61 % Ca and 0.46 % total P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg phytase as well as a positive control diet (0.77 % Ca and 0.62 % total P). Each treatment had six replicated pens with four pigs per pen. Pigs were fed the experimental diets for 28 days. Phytase supplementation linearly improved (P < 0.05) average daily gain (ADG), feed conversion ratio (FCR), and apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, Ca, and P in weaned pigs. Super high dosing with phytase (20,000 FTU/kg) further increased (P < 0.05) ADG compared with 500 FTU/kg phytase inclusion group, as well as ATTD of Ca and P. Metacarpal bone characteristics and several trace mineral concentration in bone, plasma, or organ tissues were linearly (P < 0.05) improved at increasing dose of phytase. Super high dosing with phytase (20,000 FTU/kg) supplementation improved (P < 0.05) Mn and Zn concentration in bone compared to normal dose of phytase supplementation (500 or 1,000 FTU/kg). In conclusion, supplementation of 500 FTU of Buttiauxella phytase/kg and above effectively hydrolyzed phytate in a low-P corn-soybean diet for pigs. In addition, a super high dosing with phytase (20,000 FTU/kg) improved macro- or micro mineral availability and growth performance.
Collapse
Affiliation(s)
- Zhikai Zeng
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China
| | - Qingyun Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China
| | - Qiyu Tian
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China
| | - Panfeng Zhao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China
| | - Xiao Xu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China
| | - Shukun Yu
- Department of Biotechnology, Lund University, Lund, Sweden
- Danisco DuPont, Aarhus, Denmark
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, No. 2. West Yuanmingyuan Road, Beijing, 100193, China.
| |
Collapse
|
12
|
Kahindi R, Thacker P, Nyachoti C. Nutrient digestibility in diets containing low-phytate barley, low-phytate field pea and normal-phytate field pea, and the effects of microbial phytase on energy and nutrient digestibility in the low and normal-phytate field pea fed to pigs. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Lammers PJ, Kenealy MD, Kliebenstein JB, Harmon JD, Helmers MJ, Honeyman MS. Energy use in pig production: An examination of current Iowa systems1. J Anim Sci 2012; 90:1056-68. [DOI: 10.2527/jas.2010-3782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- P. J. Lammers
- Department of Animal Science, Iowa State University, Ames 50011-1050
| | - M. D. Kenealy
- Department of Animal Science, Iowa State University, Ames 50011-1050
| | | | - J. D. Harmon
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames 50011-1050
| | - M. J. Helmers
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames 50011-1050
| | - M. S. Honeyman
- Department of Animal Science, Iowa State University, Ames 50011-1050
| |
Collapse
|
14
|
Lee SH, Ha YJ, Kwack SC. Effects of Aspergillus niger-Derived Multi-Enzyme Complex on Performance, Milk Yield, Blood Metabolites, and Manure Output in Multiparous Lactating Sows. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2010. [DOI: 10.5187/jast.2010.52.4.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Bühler K, Liesegang A, Bucher B, Wenk C, Broz J. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finishing pigs. J Anim Sci 2010; 88:3363-71. [PMID: 20562353 DOI: 10.2527/jas.2009-1940] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 2 simultaneous experiments (Exp. 1 and Exp. 2), the effects of benzoic acid (BA) and phytase (Phy) in low-P diets on bone metabolism, bone composition, and bone stability in growing and growing-finishing pigs were examined. Experiment 1 was conducted with 16 crossbred gilts in the BW range of 25 to 66 kg of BW, whereas in Exp. 2, 32 crossbred gilts (25 to 108 kg of BW) were used. All pigs were individually housed in pens and restrictively fed 1 of 4 diets throughout the experiment. Total P content of the wheat-soybean diets was 4 g/kg (all values on an as-fed basis). The experimental diets were 1) unsupplemented control diet; 2) control diet with 0.5% BA; 3) Phy diet with 750 Phy units (FTU) of Phy/kg and no BA; and 4) PhyBA, control diet with 750 FTU of Phy/kg and 0.5% BA. Blood samples were taken at the beginning of the experiment, wk 3 (only for pigs in Exp. 1), wk 6, and before slaughter to determine P and Ca in serum and concentrations of total alkaline phosphatase, serum crosslaps (marker for bone resorption), and osteocalcin (marker for bone formation). Ash, P, and Ca contents of bones and bone stability were examined using the left metatarsal bones and tibia of the pigs after slaughter. Benzoic acid did not influence any of the blood variables (P > 0.09). The addition of Phy increased (P < or =0.03) P concentration in serum from 2.71 +/- 0.08 to 3.03 +/- 0.07 mmol/L at wk 3 and content of serum crosslaps from 0.39 +/- 0.02 to 0.45 +/- 0.02 ng/mL at wk 6 and decreased (P < 0.05) osteocalcin at wk 6 by 160 ng/mL. No long-term effect of diets on serum mineral concentrations, alkaline phosphatase, and bone markers in serum could be detected. Benzoic acid negatively affected (P < or = 0.03) Ca content in bones and distal bone mineral density, especially in the younger pigs. In the control diet with 0.5% BA and the control diet with 750 FTU of Phy/kg and 0.5% BA, the CA content in bones and distal bone mineral density were reduced by 6 and 11%, respectively. Throughout the whole growing and finishing period, Phy increased (P < or =0.02) ash, P, and Ca contents in bones by 29.4, 4.8, and 11.6 g/kg of DM, respectively. Bone mineral density and bone mineral content were greater in diets with Phy (P < or = 0.03), as well as breaking strength of tibia (+22%) and metatarsal bones (+27%; P < 0.01). The results of this study indicate that for a healthy skeleton, BA should not be used in low-P diets without the addition of Phy.
Collapse
Affiliation(s)
- K Bühler
- Institute of Animal Sciences, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
16
|
Lammers PJ, Kenealy MD, Kliebenstein JB, Harmon JD, Helmers MJ, Honeyman MS. Nonsolar energy use and one-hundred-year global warming potential of Iowa swine feedstuffs and feeding strategies. J Anim Sci 2010; 88:1204-12. [PMID: 19966156 DOI: 10.2527/jas.2009-2371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Demand for nonsolar energy and concern about the implications of fossil fuel combustion have encouraged examination of energy use associated with agriculture. The United States is a global leader in pig production, and the United States swine industry is centered in Iowa. Feed is the largest individual input in pig production, but the energy consumption of the Iowa swine feed production chain has yet to be critically examined. This analysis examines nonsolar energy use and resulting 100-yr global warming potential (GWP) associated with the swine feed production chain, beginning with cultivation of crops and concluding with diet formulation. The nonsolar energy use and accompanying 100-yr GWP associated with production of 13 common swine feed ingredients are estimated. Two diet formulation strategies are considered for 4 crop sequence x ingredient choice combinations to generate 8 crop sequence x diet formulation scenarios. The first formulation strategy (simple) does not include synthetic AA or phytase. The second strategy (complex) reduces CP content of the diet by using L-lysine to meet standardized ileal digestibility lysine requirements of pigs and includes the exogenous enzyme phytase. Regardless of crop sequence x diet formulation scenario, including the enzyme phytase is energetically favorable and reduces the potential excretion of P by reducing or removing inorganic P from the complete diet. Including L-lysine reduces the CP content of the diet and requires less nonsolar energy to deliver adequate standardized ileal digestible lysine than simply feeding soybean meal. Replacing soybean meal with full-fat soybeans is not energetically beneficial under Iowa conditions. Swine diets including dried distillers grains with solubles and crude glycerol require approximately 50% more nonsolar energy inputs than corn-soybean meal diets or corn-soybean meal diets including oats. This study provides essential information on cultivation, processing, and manufacture of swine feed ingredients in Iowa that can be coupled with other models to estimate the nonsolar energy use and 100-yr GWP of pig production.
Collapse
Affiliation(s)
- P J Lammers
- Department of Animal Science, Iowa State University, Ames 50011-1050, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Saili T, Marsetyo, Poppi DP, Isherwood P, Nafiu L, Quigley SP. Effect of treatment of cocoa-pods with Aspergillus niger on liveweight gain and cocoa-pod intake of Bali (Bos sondaicus) cattle in South-East Sulawesi. ANIMAL PRODUCTION SCIENCE 2010. [DOI: 10.1071/an09193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cocoa-pods, a by-product of the cocoa industry, could potentially be used as a feed resource for ruminants in eastern Indonesia. However, little is known regarding the optimal amount to be included in the diet or the effect of treatment with Aspergillus niger on cocoa-pod quality. In this experiment the effect of rate of inclusion (0 or 10 g DM/kg liveweight.day or ad libitum) of A. niger-treated or untreated cocoa-pods in the diet on intake and liveweight gain of Bali cattle (Bos sondaicus) was investigated. Ad libitum intake of cocoa-pods was greater when they were treated with A. niger (17.1 ± 0.07 g DM/kg liveweight.day; mean ± s.e.m.) compared with untreated cocoa-pods (13.9 ± 0.19 g DM/kg liveweight.day) when offered as the sole component of the diet. The digestibility of A. niger-treated cocoa-pods (448.9 ± 23.7 g/kg) was not different to untreated cocoa-pods (422.9 ± 13.9 g/kg) when fed ad libitum, which was lower than native grass (527.2 ± 10.7 g/kg). Animals offered A. niger-treated cocoa-pods lost less liveweight than animals offered untreated cocoa-pods when offered ad libitum (–0.104 ± 0.02 and –0.280 ± 0.02 kg/day, respectively), and grew faster when included in the diet at 10 g DM/kg liveweight.day (0.233 ± 0.02 and 0.129 ± 0.02 kg/day, respectively). In conclusion, in areas where cocoa plantations exist, cocoa-pods may be a useful feed resource for ruminants when fed at low levels of inclusion in the diet. The treatment of cocoa-pods with A. niger will result in increased liveweight gain. However, it is unlikely such treatments will be adopted by small-holder farmers due to the increased requirements for inputs, such as time, labour, funds, equipment, and technical skills.
Collapse
|
18
|
Kerr BJ, Weber TE, Miller PS, Southern LL. Effect of phytase on apparent total tract digestibility of phosphorus in corn-soybean meal diets fed to finishing pigs. J Anim Sci 2010; 88:238-47. [PMID: 19783708 DOI: 10.2527/jas.2009-2146] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Five experiments were conducted to investigate the ability of different phytase products to improve P digestibility in finishing pigs. A corn-soybean meal basal diet containing 0.50% Ca, 0.32% P, and 0.40% Cr(2)O(3) was used to calculate apparent P and GE digestibility. Pigs were individually penned and fed their respective diet for ad libitum intake for 12 d before fecal sampling on d 13 and 14 and blood collection on d 14 for plasma P determination. Experiments 1 through 4 used gilts with across-trial average initial and final BW of 84 and 97 kg, respectively. Pigs were fed Natuphos (Exp. 1), OptiPhos (Exp. 2), Phyzyme (Exp. 3), or RonozymeP (Exp. 4) at 0, 200, 400, 600, 800, or 1,000 phytase units (FTU)/kg (where 1 FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P per min, at pH 5.5, from an excess of 15 micromol/L of sodium phytate at 37 degrees C). Experiment 5 used barrows with initial and final BW of 98 and 111 kg, respectively, and were fed diets containing 0, 500, or 1,000 FTU/kg of Natuphos, OptiPhos, Phyzyme, or RonozymeP. Pigs fed Natuphos (Exp. 1) and OptiPhos (Exp. 2) exhibited a linear and quadratic (P < 0.01) improvement in P digestibility with increasing levels of dietary phytase, whereas pigs fed Phyzyme (Exp. 3) and RonozymeP (Exp. 4) exhibited a linear (P < 0.01) improvement in apparent P digestibility with increasing levels of dietary phytase. In Exp. 5, the improvement in apparent P digestibility with increasing levels of dietary phytase was linear (P < 0.01) for Natuphos, Phyzyme, and RonozymeP, but was linear and quadratic (P < 0.01) for OptiPhos. Based on regression analysis, inorganic P release at 500 FTU/kg was predicted to be 0.070, 0.099, 0.038, and 0.030% for Natuphos, OptiPhos, Phyzyme, and RonozymeP, respectively. These estimates are comparable with those of pigs in Exp. 5, for which the estimated inorganic P release at 500 FTU/kg was 0.102, 0.039, and 0.028% for OptiPhos, Phyzyme, and RonozymeP, respectively, but not for the 0.034% value determined for Natuphos. The effect of dietary phytase on GE digestibility was inconsistent with a linear (P < 0.01) improvement in GE digestibility noted for OptiPhos (Exp. 2 and 5) and RonozymeP (Exp. 4), but the quadratic (P < 0.01) improvement for Natuphos. There was no effect of dietary phytase on plasma inorganic P. The data presented show clear improvements in P digestibility, with the estimated level of inorganic P release being dependent on phytase source and level.
Collapse
Affiliation(s)
- B J Kerr
- USDA-ARS-Laboratory for Agriculture and the Environment, Ames, IA 50011
| | | | | | | |
Collapse
|
19
|
Veum TL, Ledoux DR, Shannon MC, Raboy V. Effect of graded levels of iron, zinc, and copper supplementation in diets with low-phytate or normal barley on growth performance, bone characteristics, hematocrit volume, and zinc and copper balance of young swine1. J Anim Sci 2009; 87:2625-34. [PMID: 19359503 DOI: 10.2527/jas.2008-1604] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fifty crossbred barrows with an average initial age of 31 d and BW of 9.94 kg were used in a 28-d experiment to evaluate the effect of a low-phytic acid (LPA) barley mutant (M) M955, a near-isogenic progeny of the normal barley (NB) cultivar Harrington with about 90% less phytate than NB, to increase the utilization of Fe, Zn, and Cu compared with diets containing NB. The response criteria were growth performance, hematocrit volume, metacarpal bone characteristics, and the apparent absorption, retention, and excretion of Zn and Cu. The 2 barley cultivars (NB and M955) and the 5 trace mineral (TM) treatment concentrations of Fe and Zn (0, 25, 50, 75, and 100% of the requirement as FeSO(4) and ZnSO(4)) and Cu (0, 40, 80, 120, and 160% of the requirement as CuSO(4)) made 10 treatments in a factorial arrangement. Available P was equalized at 0.33% in all diets by adding monosodium phosphate to the basal diet containing NB, and all diets contained 0.65% Ca. Diets were adequate in all other nutrients. Barley and soybean meal were the only sources of phytate in the practical diets that also contained spray-dried whey. The barrows were fed the diets to appetite in meal form twice daily in individual metabolism crates. There were no barley cultivar x TM treatment interactions, and there were no differences between the NB and M955 barley cultivars for any of the response criteria measured. However, for the TM treatments, there were linear increases (P < or = 0.05) in ADFI, ADG, hematocrit volume, metacarpal bone breaking strength and ash weight, and the apparent absorption, retention, and excretion (mg/d) of Zn and Cu. In conclusion, the LPA barley had no effect on the response criteria in this experiment, apparently because of the small increase in the availability of the endogenous trace minerals in the practical diets containing M955 compared with NB. However, increasing the supplementation of Fe and Zn from 0 to 100% (160% for Cu) of the requirement resulted in linear increases in growth performance, hematocrit volume, metacarpal bone strength and ash weight, and the apparent absorption, retention, and excretion of Zn and Cu. Therefore, these results indicate that the inorganic trace mineral supplementation of practical diets for young pigs should not be less than the National Research Council requirements for swine.
Collapse
Affiliation(s)
- T L Veum
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|