1
|
Vu VH, Donovan SM, Brink LR, Li Q, Gross G, Dilger RN, Fleming SA. Developing a Reference Database for Typical Body and Organ Growth of the Artificially Reared Pig as a Biomedical Research Model. Front Pediatr 2021; 9:746471. [PMID: 34926340 PMCID: PMC8672453 DOI: 10.3389/fped.2021.746471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023] Open
Abstract
Objectives: The pig is a common model utilized to support substantiation of novel bioactive components in infant formula. However, reference ranges for outcomes to determine safety are unclear. Our objective was to use historical data to objectively define typical body and organ growth metrics of the domesticated pig in research. Methods: Twenty-two studies were compiled to assess typical growth of body and organ weights in young pigs. Metadata were organized to include milk replacer sources, bioactive components, sex, breed, source of herd, feeding regimen, and rearing environment. A combination of statistical models including simple linear regression and linear mixed effect models were used to assess typical growth patterns. Results: Over 18,000 data points from 786 animals were available. In general, minimal differences in the growth of pigs who were male and female, artificially- or sow-reared, or fed ad libitum- or by scheduled-feeding, were observed in the first 30 days of life (P > 0.05). A weight-for-age chart from reference pigs was developed to compare body weights of pigs demonstrating growth characterized as accelerated, typical, reduced, and failure to thrive to illustrate effects of dietary interventions. Distributions of relative brain, liver, and intestine weights (as % of total body weight) were similar between rearing environments and sexes. An alternative bivariate level approach was utilized for the analysis of organ weights. This approach revealed significant biologically-relevant insights into how deficient diets can affect organ weight that a univariate level assessment of weight distribution was unable to detect. Conclusions: Ultimately, these data can be used to better interpret whether bioactive ingredients tested in the pig model affect growth and development within typical reference values for pigs in the first 30 days of life.
Collapse
Affiliation(s)
- Vinh H Vu
- Traverse Science, Champaign, IL, United States
| | - Sharon M Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, United States
| | - Lauren R Brink
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Qian Li
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute, Evansville, IN, United States
| | - Gabriele Gross
- Medical and Scientific Affairs, Reckitt
- Mead Johnson Nutrition Institute, Nijmegen, Netherlands
| | - Ryan N Dilger
- Traverse Science, Champaign, IL, United States.,Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States.,Piglet Nutrition and Cognition Laboratory, Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | |
Collapse
|
2
|
Palin MF, Farmer C, Duarte CRA. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Adipokines affect mammary growth and function in farm animals. J Anim Sci 2018; 95:5689-5700. [PMID: 29293788 DOI: 10.2527/jas2017.1777] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The essential role of mammary fat pads in mammary growth and morphogenesis was the first indication that biologically active molecules, secreted from adipocytes or other stromal cells, could regulate endocrine cues for growth and function of the mammary gland. The presence of leptin and adiponectin receptors in mammary tissues suggested that locally produced or circulating adipokines could affect mammary growth and function. Herein, we present the current knowledge on the role of adipokines in mammary cell proliferation and differentiation and in lactogenesis and galactopoiesis in farm animals. We also address the role of milk adipokines in the neonate. Accumulating evidence suggests that adipokines could act as metabolic sensors, regulating mammary growth and function in periods of metabolic adaptations such as late pregnancy and early lactation. Indeed, different experiments reported that adiponectin and leptin expression varies according to physiological stages and nutritional status of the animal. The current review also demonstrates that adipokines, such as leptin and adiponectin, are important regulators of the action of lactogenic hormones in the mammary gland. Findings also suggest important roles for adipokines in growth and intestinal maturation of the neonate.
Collapse
|
3
|
Abstract
Fat affects meat quality, value and production efficiency as well as providing energy reserves for pregnancy and lactation in farm livestock. Leptin, the adipocyte product of the obese (ob) gene, was quickly seen as a predictor of body fat content in animals approaching slaughter and an aid to assessing reproductive readiness in females. Its participation in inflammation and immune responses that help animals survive infection and trauma has clear additional relevance to meat and milk production. Furthermore, almost a decade of discoveries of nucleotide polymorphisms in the leptin and leptin receptor genes has suggested useful applications relating to feed intake regulation, the efficiency of feed use, the composition of growth, the timing of puberty, mammogenesis and mammary gland function and fertility in cattle, pigs and poultry. The current review attempts to summarise where research has taken us in each of these aspects and speculates on where future research might lead.
Collapse
|
4
|
Effects of leptin and adiponectin on proliferation and protein metabolism of porcine myoblasts. Histochem Cell Biol 2012; 138:271-87. [DOI: 10.1007/s00418-012-0949-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2012] [Indexed: 02/01/2023]
|