1
|
Wei W, Zha C, Jiang A, Chao Z, Hou L, Liu H, Huang R, Wu W. A Combined Differential Proteome and Transcriptome Profiling of Fast- and Slow-Twitch Skeletal Muscle in Pigs. Foods 2022; 11:foods11182842. [PMID: 36140968 PMCID: PMC9497725 DOI: 10.3390/foods11182842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle fiber types can contribute in part to affecting pork quality parameters. Biceps femoris (Bf) (fast muscle or white muscle) and Soleus (Sol) (slow muscle or red muscle) are two typical skeletal muscles characterized by obvious muscle fiber type differences in pigs. However, the critical proteins and potential regulatory mechanisms regulating porcine skeletal muscle fibers have yet to be clearly defined. In this study, the isobaric Tag for Relative and Absolute Quantification (iTRAQ)-based proteome was used to identify the key proteins affecting the skeletal muscle fiber types with Bf and Sol, by integrating the previous transcriptome data, while function enrichment analysis and a protein–protein interaction (PPI) network were utilized to explore the potential regulatory mechanisms of skeletal muscle fibers. A total of 126 differentially abundant proteins (DAPs) between the Bf and Sol were identified, and 12 genes were found to be overlapping between differentially expressed genes (DEGs) and DAPs, which are the critical proteins regulating the formation of skeletal muscle fibers. Functional enrichment and PPI analysis showed that the DAPs were mainly involved in the skeletal-muscle-associated structural proteins, mitochondria and energy metabolism, tricarboxylic acid cycle, fatty acid metabolism, and kinase activity, suggesting that PPI networks including DAPs are the main regulatory network affecting muscle fiber formation. Overall, these data provide valuable information for understanding the molecular mechanism underlying the formation and conversion of muscle fiber types, and provide potential markers for the evaluation of meat quality.
Collapse
Affiliation(s)
- Wei Wei
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengwan Zha
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiwen Jiang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Liming Hou
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruihua Huang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-84399762
| |
Collapse
|
2
|
Ribeiro DM, Coelho D, Osório H, Martins C, Bengala Freire JP, Almeida J, Moreira O, Almeida AM, Prates JA. Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigs. J Proteomics 2022; 256:104504. [DOI: 10.1016/j.jprot.2022.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
3
|
The study of protein biomarkers to understand the biochemical processes underlying beef color development in young bulls. Meat Sci 2017; 134:18-27. [DOI: 10.1016/j.meatsci.2017.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 01/05/2023]
|
4
|
te Pas MFW, Lebret B, Oksbjerg N. Invited review: Measurable biomarkers linked to meat quality from different pig production systems. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-271-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Biological processes underlie all livestock traits, including post-mortem meat quality traits. Biomarkers are molecular components of the biological processes showing differential expression associated with the phenotype of the trait. The phenotypes of the meat quality traits are determined by the animal's genotype interacting with the environment affecting the expression of the genome. The omics technologies enable measuring the expression of the genome at all levels: transcriptome, proteome, and metabolome. Associations between the phenotype of the traits and expressions measured with the omics techniques are a first step in developing biomarkers. Biomarkers enable the monitoring, diagnosis, and prediction of changes in meat quality related to external (environmental, e.g. feed and animal management conditions) stimuli and interactions with the genotype. In this paper we review the development of biomarkers for meat quality of pigs in diverse pig breeds, environments, and pork production chains.
Collapse
|
5
|
te Pas MF, Kruijt L, Pierzchala M, Crump RE, Boeren S, Keuning E, Hoving-Bolink R, Hortós M, Gispert M, Arnau J, Diestre A, Mulder HA. Identification of proteomic biomarkers in M. Longissimus dorsi as potential predictors of pork quality. Meat Sci 2013; 95:679-87. [DOI: 10.1016/j.meatsci.2012.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 12/06/2012] [Accepted: 12/21/2012] [Indexed: 11/15/2022]
|
6
|
Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry: A tool to predict pork quality. Meat Sci 2013. [DOI: 10.1016/j.meatsci.2012.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
te Pas MFW, Koopmans SJ, Kruijt L, Calus MPL, Smits MA. Plasma proteome profiles associated with diet-induced metabolic syndrome and the early onset of metabolic syndrome in a pig model. PLoS One 2013; 8:e73087. [PMID: 24086269 PMCID: PMC3781149 DOI: 10.1371/journal.pone.0073087] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 07/18/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity and related diabetes are important health threatening multifactorial metabolic diseases and it has been suggested that 25% of all diabetic patients are unaware of their patho-physiological condition. Biomarkers for monitoring and control are available, but early stage predictive biomarkers enabling prevention of these diseases are still lacking. We used the pig as a model to study metabolic disease because humans and pigs share a multitude of metabolic similarities. Diabetes was chemically induced and control and diabetic pigs were either fed a high unsaturated fat (Mediterranean) diet or a high saturated fat/cholesterol/sugar (cafeteria) diet. Physiological parameters related to fat metabolism and diabetes were measured. Diabetic pigs' plasma proteome profiles differed more between the two diets than control pigs plasma proteome profiles. The expression levels of several proteins correlated well with (patho)physiological parameters related to the fat metabolism (cholesterol, VLDL, LDL, NEFA) and diabetes (Glucose) and to the diet fed to the animals. Studying only the control pigs as a model for metabolic syndrome when fed the two diets showed correlations to the same parameters but now more focused on insulin, glucose and abdominal fat depot parameters. We conclude that proteomic profiles can be used as a biomarker to identify pigs with developing metabolic syndrome (prediabetes) and diabetes when fed a cafeteria diet. It could be developed into a potential biomarkers for the early recognition of metabolic diseases.
Collapse
Affiliation(s)
- Marinus F. W. te Pas
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Sietse-Jan Koopmans
- Department of Animal Sciences, Adaptation Physiology Group of Wageningen University, AH Wageningen, The Netherlands
| | - Leo Kruijt
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Mario P. L. Calus
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| | - Mari A. Smits
- Animal Breeding and Genomics Centre (ABGC), Wageningen UR Livestock Research, Lelystad, The Netherlands
| |
Collapse
|
8
|
Paredi G, Sentandreu MA, Mozzarelli A, Fadda S, Hollung K, de Almeida AM. Muscle and meat: New horizons and applications for proteomics on a farm to fork perspective. J Proteomics 2013; 88:58-82. [DOI: 10.1016/j.jprot.2013.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/31/2013] [Indexed: 11/16/2022]
|
9
|
Xu H, Xu Y, Liang X, Wang Y, Jin F, Liu D, Ma Y, Yuan H, Song X, Zeng W. Porcine skeletal muscle differentially expressed gene ATP5B: molecular characterization, expression patterns, and association analysis with meat quality traits. Mamm Genome 2013; 24:142-50. [PMID: 23420545 DOI: 10.1007/s00335-013-9446-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022]
Abstract
The 2-DE/MS-based proteomics approach was used to investigate the differences of porcine skeletal muscle, and ATP5B was identified as one differential expression protein. In the present study, ATP5B gene was further cloned by RT-PCR, the sequence was analyzed using the bioinformatics method, and the mRNA expression was detected by qRT-PCR. Sequence analysis showed that the porcine ATP5B gene contains an ORF encoding 528-amino-acid residues with 49 and 166 nucleotides in the 5' and 3' UTRs, respectively. The mRNA of ATP5B was widely expressed in all 14 tissues tested, but especially highly expressed in parorchis and fat. The expression pattern of ATP5B was similar in Large White and Meishan breeds, showing that the expression was upregulated by 3 days after birth and downregulated during postnatal development of skeletal muscle. Comparing the two breeds, the mRNA abundance of ATP5B in Large White was more highly expressed than in Meishan at all developmental stages (P < 0.05). Moreover, a synonymous mutation, G75A in exon 8, was identified and association analysis with the traits of meat quality showed that it was significantly associated with the RLF, FMP, IFR, IMF, and IMW (P < 0.05). These results suggested that ATP5B probably plays a key role in porcine skeletal muscle development and may provide further insight into the molecular mechanisms responsible for breed-specific differences in meat quality.
Collapse
Affiliation(s)
- Haixia Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
D'Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J Proteomics 2013; 78:558-77. [DOI: 10.1016/j.jprot.2012.10.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
|
11
|
Marcos B, Gou P, Serra X, Guàrdia MD, Zhen ZY, Hortós M, Mach N, te Pas MFW, Keuning E, Kruijt L, Font i Furnols M, Arnau J. Analysis of raw hams using SELDI-TOF-MS to predict the final quality of dry-cured hams. Meat Sci 2012; 93:233-9. [PMID: 23036942 DOI: 10.1016/j.meatsci.2012.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 06/04/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022]
Abstract
The relationship between protein profiles of Gluteus medius (GM) muscles of raw hams obtained from 4 pure breed pigs (Duroc, Large White, Landrace, and Piétrain) with the final quality of the Semimembranosus and Biceps femoris muscles of dry-cured hams was investigated. As expected, Duroc hams showed higher levels of marbling and intramuscular fat content than the other breeds. Piétrain hams were the leanest and most conformed, and presented the lowest salt content in dry-cured hams. Even if differences in the quality traits (colour, water activity, texture, composition, intramuscular fat, and marbling) of dry-cured hams were observed among the studied breeds, only small differences in the sensory attributes were detected. Surface-enhanced laser desorption/ionisation time-of-flight mass spectrometry (SELDI-TOF-MS) was used to obtain the soluble protein profiles of GM muscles. Some associations between protein peaks obtained with SELDI-TOF-MS and quality traits, mainly colour (b*) and texture (F(0), Y(2), Y(90)) were observed. Candidate protein markers for the quality of processed dry-cured hams were identified.
Collapse
Affiliation(s)
- B Marcos
- IRTA-Food Technology, 17121 Monells, Girona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
de Almeida AM, Bendixen E. Pig proteomics: A review of a species in the crossroad between biomedical and food sciences. J Proteomics 2012; 75:4296-314. [DOI: 10.1016/j.jprot.2012.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 11/29/2022]
|
13
|
Ohlendieck K. Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 2011; 1:6. [PMID: 21798084 PMCID: PMC3143904 DOI: 10.1186/2044-5040-1-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/01/2011] [Indexed: 01/08/2023] Open
Abstract
Background Skeletal muscle fibres represent one of the most abundant cell types in mammals. Their highly specialised contractile and metabolic functions depend on a large number of membrane-associated proteins with very high molecular masses, proteins with extensive posttranslational modifications and components that exist in highly complex supramolecular structures. This makes it extremely difficult to perform conventional biochemical studies of potential changes in protein clusters during physiological adaptations or pathological processes. Results Skeletal muscle proteomics attempts to establish the global identification and biochemical characterisation of all members of the muscle-associated protein complement. A considerable number of proteomic studies have employed large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography, and combined them with mass spectrometry as the method of choice for high-throughput protein identification. Muscle proteomics has been applied to the comprehensive biochemical profiling of developing, maturing and aging muscle, as well as the analysis of contractile tissues undergoing physiological adaptations seen in disuse atrophy, physical exercise and chronic muscle transformation. Biomedical investigations into proteome-wide alterations in skeletal muscle tissues were also used to establish novel biomarker signatures of neuromuscular disorders. Importantly, mass spectrometric studies have confirmed the enormous complexity of posttranslational modifications in skeletal muscle proteins. Conclusions This review critically examines the scientific impact of modern muscle proteomics and discusses its successful application for a better understanding of muscle biology, but also outlines its technical limitations and emerging techniques to establish new biomarker candidates.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Muscle Biology Laboratory, Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland.
| |
Collapse
|
14
|
Verma N, Rettenmeier AW, Schmitz-Spanke S. Recent advances in the use of Sus scrofa
(pig) as a model system for proteomic studies. Proteomics 2011; 11:776-93. [DOI: 10.1002/pmic.201000320] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/30/2010] [Accepted: 09/06/2010] [Indexed: 12/11/2022]
|