1
|
Santostefano F, Moiron M, Sánchez-Tójar A, Fisher DN. Indirect genetic effects increase the heritable variation available to selection and are largest for behaviors: a meta-analysis. Evol Lett 2025; 9:89-104. [PMID: 39906585 PMCID: PMC11790215 DOI: 10.1093/evlett/qrae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 02/06/2025] Open
Abstract
The evolutionary potential of traits is governed by the amount of heritable variation available to selection. While this is typically quantified based on genetic variation in a focal individual for its own traits (direct genetic effects, DGEs), when social interactions occur, genetic variation in interacting partners can influence a focal individual's traits (indirect genetic effects, IGEs). Theory and studies on domesticated species have suggested IGEs can greatly impact evolutionary trajectories, but whether this is true more broadly remains unclear. Here, we perform a systematic review and meta-analysis to quantify the amount of trait variance explained by IGEs and the contribution of IGEs to predictions of adaptive potential. We identified 180 effect sizes from 47 studies across 21 species and found that, on average, IGEs of a single social partner account for a small but statistically significant amount of phenotypic variation (0.03). As IGEs affect the trait values of each interacting group member and due to a typically positive-although statistically nonsignificant-correlation with DGEs (r DGE-IGE = 0.26), IGEs ultimately increase trait heritability substantially from 0.27 (narrow-sense heritability) to 0.45 (total heritable variance). This 66% average increase in heritability suggests IGEs can increase the amount of genetic variation available to selection. Furthermore, whilst showing considerable variation across studies, IGEs were most prominent for behaviors and, to a lesser extent, for reproduction and survival, in contrast to morphological, metabolic, physiological, and development traits. Our meta-analysis, therefore, shows that IGEs tend to enhance the evolutionary potential of traits, especially for those tightly related to interactions with other individuals, such as behavior and reproduction.
Collapse
Affiliation(s)
- Francesca Santostefano
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, United Kingdom
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | | - David N Fisher
- School of Biological Sciences, University of Aberdeen, King’s College, Aberdeen, United Kingdom
| |
Collapse
|
2
|
Larzul C. How to Improve Meat Quality and Welfare in Entire Male Pigs by Genetics. Animals (Basel) 2021; 11:ani11030699. [PMID: 33807677 PMCID: PMC7998615 DOI: 10.3390/ani11030699] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Successful breeding of entire male pigs needs a better understanding of factors driving meat quality and behavior traits as entire male pigs have lower meat quality, including an occasional strong defect known as boar taint, and more aggressive and sexual behavior. The review provides an update on how genetic factors affecting boar taint compounds and aggressive behavior in male pigs with emphasis on application in selection. Abstract Giving up surgical castration is desirable to avoid pain during surgery but breeding entire males raises issues on meat quality, particularly on boar taint, and aggression. It has been known for decades that boar taint is directly related to sexual development in uncastrated male pigs. The proportion of tainted carcasses depends on many factors, including genetics. The selection of lines with a low risk of developing boar taint should be considered as the most desirable solution in the medium to long term. It has been evidenced that selection against boar taint is feasible, and has been set up in a balanced way in some pig populations to counterbalance potential unfavorable effects on reproductive performances. Selection against aggressive behaviors, though theoretically feasible, faces phenotyping challenges that compromise selection in practice. In the near future, new developments in modelization, automatic recording, and genomic data will help define breeding objectives to solve entire male meat quality and welfare issues.
Collapse
Affiliation(s)
- Catherine Larzul
- GenPhySE, Université de Toulouse, French National Institute for Agriculture, Food, and Environment INRAE, ENVT, 31326 Castanet-Tolosan, France
| |
Collapse
|
3
|
Estimation of social genetic effects on feeding behaviour and production traits in pigs. Animal 2021; 15:100168. [PMID: 33485828 DOI: 10.1016/j.animal.2020.100168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain (ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the same pen. The aim of our study was to estimate the genetic parameters of feeding behaviour and production traits with statistical models that include social genetic effects (SGEs). The data contained 3075 Finnish Yorkshire, 3351 Finnish Landrace, and 968 F1-crossbred pigs. Feeding behaviour traits were measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent in feeding per visit (TPV), feed intake per visit (FPV), and feed intake rate (FR). The test period was divided into five periods of 20 days. The number of pigs per pen varied from 8 to 12. Two model approaches were tested, i.e. a fixed group size model and a variable group size model. For the fixed group size model, eight random pigs per pen were included in the analysis, while all pigs in a pen were included for the variable group size model. The linear mixed-effects model included sex, breed, and herd*year*season as fixed effects and group (batch*pen), litter, the animal itself (direct genetic effect (DGE)), and pen mates (SGEs) as random effects. For feeding behaviour traits, estimates of the total heritable variation (T2± SE) and classical heritability (h2± SE, values given in brackets) from the variable group size model (e.g. period 1) were 0.34 ± 0.13 (0.30 ± 0.04) for NVD, 0.41 ± 0.10 (0.37 ± 0.04) for TPD, 0.40 ± 0.15 (0.14 ± 0.03) for DFI, 0.53 ± 0.15 (0.28 ± 0.04) for TPV, 0.66 ± 0.17 (0.28 ± 0.04) for FPV, and 0.29 ± 0.13 (0.22 ± 0.03) for FR. The effect of social interaction was minimal for ADG (T2 = 0.29 ± 0.11 and h2 = 0.29 ± 0.04), BF (T2 = 0.48 ± 0.12 and h2 = 0.38 ± 0.07), and FCR (T2 = 0.37 ± 0.12 and h2 = 0.29 ± 0.04) using the variable group size model. In conclusion, the results indicate that social interactions have a considerable indirect genetic effect on the feeding behaviour and FCR of pigs but not on ADG and BF.
Collapse
|
4
|
Adenaike AS, Peters SO, Ogundero AE, Wonodi JO, Ikeobi CON. Contribution of social genetic effects in variance components estimation for body weight in Nigerian indigenous chickens raised in a tropical humid location. Trop Anim Health Prod 2021; 53:124. [PMID: 33447918 DOI: 10.1007/s11250-021-02568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
Social interactions among chickens can have a great unfavourable effect on economic returns in a poultry farm. The purpose of this study was to use four models to examine the influence of social genetic influences on the variation in body weight of Nigerian indigenous chickens. Sex was treated as the fixed effect within the models. Direct additive genetic, social genetic, and family effects and covariance between direct and social genetic effects were used as random effects. Data were analysed using single-trait animal models which include or exclude social genetic effects. Model comparison revealed that inclusion of full-sib family effect in model 3 did not cause any change in residual and additive genetic variances relative to estimates obtained with model 2. In general, social genetic variance was lower than the estimate for additive genetic variance, but substantially added to the overall heritable variance. For direct hereditary, full-sib family, and residual effects, accounting for heritable social effect in model 4 had a marginal effect on the size of the variances measured. All the estimated residual, additive genetic, social genetic effect, and family variances increased in comparison with model 3. The relationship between direct and social additive effects was positive and not significantly different from 0 (P > 0.05), suggesting autonomy between the direct and social breeding values. In conclusion, the use of models that account for direct effect and social genetic effect of the individual on its group members would entail an optimal individual selection scheme to increase the body weight of chickens.
Collapse
Affiliation(s)
- A S Adenaike
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria.
| | - S O Peters
- Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA
| | - A E Ogundero
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Wonodi
- Department of Agriculture, Ignatius Ajuru University of Education, Port Harcourt, Nigeria
| | - C O N Ikeobi
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
5
|
Herrera-Cáceres W, Ragab M, Sánchez JP. Indirect genetic effects on the relationships between production and feeding behaviour traits in growing Duroc pigs. Animal 2020; 14:233-242. [PMID: 31571565 PMCID: PMC7462843 DOI: 10.1017/s1751731119002179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 07/16/2019] [Accepted: 08/05/2019] [Indexed: 11/06/2022] Open
Abstract
Performance and feeding behaviour traits in growing pigs could be affected by social interaction effects when animals are raised in group. So, properly knowing the genetic correlations between direct and social interaction effects among performance and feeding behaviour traits could improve the accuracy of the genetic evaluations. Our aim was to explore the role of feeding behaviour traits (FBT) and indirect genetic effects (IGEs) in the genetic evaluations of growing pigs. Thus, genetic parameters were estimated for production traits (PT): average daily gain, average daily feed consumption, feed conversion ratio and backfat thickness; as well as for FBT: average daily feeding rate, average daily feeding frequency, average daily occupation time and average daily time between consecutive visits. Traits were recorded in 1144 Duroc pigs during the fattening period. Two bivariate models were fitted: classic animal model and an animal model fitting IGE. Estimations were done following Bayesian procedures. Heritability estimates obtained with classic animal model for all studied traits were medium-high. The additional heritable variation captured by IGE supposed that the ratios of total genetic variance to phenotypic variance (T2) were higher than the heritability estimates obtained with the classic model, except for occupation time trait, when a lower value (0.20 ± 0.19) was estimated. This is due to a high and negative correlation between IGE and direct genetic effects (DGEs) of this particular trait (-0.78 ± 0.27). Results from classic animal model do not evidence a clear role of FBT to improve the accuracy of breeding value predictions for PT; only average daily feeding rate seems to show a positive correlation (around 0.50 to 0.60) with average daily gain, average daily feed consumption and backfat thickness. However, when IGE model was fitted, the number of estimates of genetic correlations between FBT and PT showing a relevant magnitude increased, generally for the correlations between IGE of FBT and DGE of PT; or particularly for the correlations between IGE of average daily feeding frequency, and the IGE of all the PT, except average daily gain. Thus, in evaluations using the animal model with IGE fitted, the inclusion of FBT could aid the improvement of the accuracy of breeding value predictions for PT. This is a consequence of the improved genetic relationships between traits that can be fitted when considering such models.
Collapse
Affiliation(s)
- W. Herrera-Cáceres
- Genetica i Milloa Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon s/n, Caldes de Montbui, Barcelona 08140, Spain
| | - M. Ragab
- Poultry Production Department, Kafr El Sheikh University, Kafr El Sheikh 33516, Egypt
| | - J. P. Sánchez
- Genetica i Milloa Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon s/n, Caldes de Montbui, Barcelona 08140, Spain
| |
Collapse
|
6
|
Drag MH, Kogelman LJA, Maribo H, Meinert L, Thomsen PD, Kadarmideen HN. Characterization of eQTLs associated with androstenone by RNA sequencing in porcine testis. Physiol Genomics 2019; 51:488-499. [PMID: 31373884 DOI: 10.1152/physiolgenomics.00125.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Characterization of genetic variants affecting genome-wide gene expression levels (expression quantitative trait loci or eQTLs) in pig testes may improve our understanding of genetic architecture of boar taint (an animal welfare trait) and helps in genome-assisted or genomic selection programs. The aims of this study were to identify eQTLs associated with androstenone, to find candidate eQTLs for low androstenone, and to validate the top eQTL by reverse transcriptase quantitative PCR (RT-qPCR). Gene expression profiles were obtained by RNA sequencing in testis from Danish cross-bred pigs and genotype data by 80K single nucleotide polymorphism panel. A total of 262 eQTLs [false discovery rate (FDR) < 0.05] were identified by using two software packages: Matrix eQTL and Krux eQTL. Of these, 149 cis-acting eQTLs were significantly associated with androstenone concentrations and gene expression (FDR < 0.05). The eQTLs were associated with several genes of boar taint relevance including CYP1A2, CYB5D1, and SPHK2. One eQTL gene, AMPH, was differentially expressed (FDR < 0.05) and affected by chicory. Five candidate eQTLs associated with low androstenone concentrations were discovered, including the top eQTL associated with CYP1A2. RT-qPCR confirmed target gene expression to be significantly (P < 0.05) different based on eQTL genotypes. Furthermore, eQTLs were enriched as QTLs for 15 boar taint related traits from the PigQTLdb. This is the first study to report eQTLs in testes of commercial crossbred pigs used in pork production and to reveal genetic architecture of boar taint. Potential applications include development of a DNA test and in advanced genomic selection models for boar taint.
Collapse
Affiliation(s)
- Markus H Drag
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisette J A Kogelman
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hanne Maribo
- SEGES, Danish Pig Research Center, Copenhagen, Denmark
| | - Lene Meinert
- Danish Meat Research Institute (DMRI), Danish Technological Institute, Taastrup, Denmark
| | - Preben D Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Haja N Kadarmideen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Heidaritabar M, Bijma P, Janss L, Bortoluzzi C, Nielsen HM, Madsen P, Ask B, Christensen OF. Models with indirect genetic effects depending on group sizes: a simulation study assessing the precision of the estimates of the dilution parameter. Genet Sel Evol 2019; 51:24. [PMID: 31146682 PMCID: PMC6543592 DOI: 10.1186/s12711-019-0466-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 05/16/2019] [Indexed: 12/03/2022] Open
Abstract
Background In settings with social interactions, the phenotype of an individual is affected by the direct genetic effect (DGE) of the individual itself and by indirect genetic effects (IGE) of its group mates. In the presence of IGE, heritable variance and response to selection depend on size of the interaction group (group size), which can be modelled via a ‘dilution’ parameter (d) that measures the magnitude of IGE as a function of group size. However, little is known about the estimability of d and the precision of its estimate. Our aim was to investigate how precisely d can be estimated and what determines this precision. Methods We simulated data with different group sizes and estimated d using a mixed model that included IGE and d. Schemes included various average group sizes (4, 6, and 8), variation in group size (coefficient of variation (CV) ranging from 0.125 to 1.010), and three values of d (0, 0.5, and 1). A design in which individuals were randomly allocated to groups was used for all schemes and a design with two families per group was used for some schemes. Parameters were estimated using restricted maximum likelihood (REML). Bias and precision of estimates were used to assess their statistical quality. Results The dilution parameter of IGE can be estimated for simulated data with variation in group size. For all schemes, the length of confidence intervals ranged from 0.114 to 0.927 for d, from 0.149 to 0.198 for variance of DGE, from 0.011 to 0.086 for variance of IGE, and from 0.310 to 0.557 for genetic correlation between DGE and IGE. To estimate d, schemes with groups composed of two families performed slightly better than schemes with randomly composed groups. Conclusions Dilution of IGE was estimable, and in general its estimation was more precise when CV of group size was larger. All estimated parameters were unbiased. Estimation of dilution of IGE allows the contribution of direct and indirect variance components to heritable variance to be quantified in relation to group size and, thus, it could improve prediction of the expected response to selection in environments with group sizes that differ from the average size. Electronic supplementary material The online version of this article (10.1186/s12711-019-0466-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzieh Heidaritabar
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark.
| | - Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | - Luc Janss
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Chiara Bortoluzzi
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | | | - Per Madsen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Birgitte Ask
- SEGES, Danish Pig Research Centre, Copenhagen, Denmark
| | - Ole F Christensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|
8
|
Camerlink I, Ursinus WW, Bartels AC, Bijma P, Bolhuis JE. Indirect Genetic Effects for Growth in Pigs Affect Behaviour and Weight Around Weaning. Behav Genet 2018; 48:413-420. [PMID: 29922987 PMCID: PMC6097724 DOI: 10.1007/s10519-018-9911-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
Abstract
Selection for indirect genetic effects (IGE), i.e. the genetic effect of an individual on a trait of another individual, is a promising avenue to increase trait values in plant and animal breeding. Studies in livestock suggest that selection for IGE for growth (IGEg) might increase animals' capacity to tolerate stress. We assessed the effect of a stressful phase (weaning) on the behaviour and performance of pigs (n = 480) divergently selected for high or low IGEg. High IGEg pigs were significantly slower to explore the feed and gained less weight than low IGEg pigs in the days after weaning. In line with previous findings, high IGEg animals may have prioritized the formation of social ranks.
Collapse
Affiliation(s)
- Irene Camerlink
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands.
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands.
- Institute of Animal Husbandry and Animale Welfare, University for Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| | - Winanda W Ursinus
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
- Animal Behaviour & Welfare, Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Andrea C Bartels
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Piter Bijma
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - J Elizabeth Bolhuis
- Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
9
|
Baud A, Mulligan MK, Casale FP, Ingels JF, Bohl CJ, Callebert J, Launay JM, Krohn J, Legarra A, Williams RW, Stegle O. Genetic Variation in the Social Environment Contributes to Health and Disease. PLoS Genet 2017; 13:e1006498. [PMID: 28121987 PMCID: PMC5266220 DOI: 10.1371/journal.pgen.1006498] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/21/2016] [Indexed: 11/29/2022] Open
Abstract
Assessing the impact of the social environment on health and disease is challenging. As social effects are in part determined by the genetic makeup of social partners, they can be studied from associations between genotypes of one individual and phenotype of another (social genetic effects, SGE, also called indirect genetic effects). For the first time we quantified the contribution of SGE to more than 100 organismal phenotypes and genome-wide gene expression measured in laboratory mice. We find that genetic variation in cage mates (i.e. SGE) contributes to variation in organismal and molecular measures related to anxiety, wound healing, immune function, and body weight. Social genetic effects explained up to 29% of phenotypic variance, and for several traits their contribution exceeded that of direct genetic effects (effects of an individual's genotypes on its own phenotype). Importantly, we show that ignoring SGE can severely bias estimates of direct genetic effects (heritability). Thus SGE may be an important source of "missing heritability" in studies of complex traits in human populations. In summary, our study uncovers an important contribution of the social environment to phenotypic variation, sets the basis for using SGE to dissect social effects, and identifies an opportunity to improve studies of direct genetic effects.
Collapse
Affiliation(s)
- Amelie Baud
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Francesco Paolo Casale
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jesse F. Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Casey J. Bohl
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jacques Callebert
- AP-HP, Hôpital Lariboisière, Department of Biochemistry, INSERM U942, Paris, France
| | - Jean-Marie Launay
- AP-HP, Hôpital Lariboisière, Department of Biochemistry, INSERM U942, Paris, France
| | - Jon Krohn
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | | | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
10
|
Rostellato R, Sartori C, Bonfatti V, Chiarot G, Carnier P. Direct and social genetic effects on body weight at 270 days and carcass and ham quality traits in heavy pigs. J Anim Sci 2014; 93:1-10. [PMID: 25412749 DOI: 10.2527/jas.2014-8246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aims of this study were to estimate covariance components for BW at 270 d (BW270) and carcass and ham quality traits in heavy pigs using models accounting for social effects and to compare the ability of such models to fit the data relative to models ignoring social interactions. Phenotypic records were from 9,871 pigs sired by 293 purebred boars mated to 456 crossbred sows. Piglets were born and reared at the same farm and randomly assigned at 60 d of age to groups (6.1 pigs per group on average) housed in finishing pens, each having an area of 6 m(2). The average additive genetic relationship among group mates was 0.11. Pigs were slaughtered at 277 ± 3 d of age and 169.7 ± 13.9 kg BW in groups of nearly 70 animals each. Four univariate animal models were compared: a basic model (M1) including only direct additive genetic effects, a model (M2) with nonheritable social group (pen) effects in addition to effects in M1, a model (M3) accounting for litter effects in addition to M2, and a model (M4) accounting for social genetic effects in addition to effects in M3. Restricted maximum likelihood estimates of covariance components were obtained for BW270; carcass backfat depth; carcass lean meat content (CLM); iodine number (IOD); and linoleic acid content (LIA) of raw ham subcutaneous fat; subcutaneous fat depth in the proximity of semimembranosus muscle (SFD1) and quadriceps femoris muscle (SFD2); and linear scores for ham round shape (RS), subcutaneous fat (SF), and marbling. Likelihood ratio tests indicated that, for all traits, M2 fit the data better than M1 and that M3 was superior to M2 except for SFD1 and SFD2. Model M4 was significantly better than M3 for BW270 (P < 0.001) and CLM, IOD, RS, and SF (P < 0.05). The contribution of social genetic effects to the total heritable variance was large for CLM and BW270, ranging from 33.2 to 35%, whereas the one for ham quality traits ranged from 6.8 (RS) to 11.2% (SF). Direct and social genetic effects on BW270 were uncorrelated, whereas there was a negative genetic covariance between direct and social effects on CLM, IOD, RS, and SF, which reduced the total heritable variance. This variance, measured relative to phenotypic variance, ranged from 21 (CLM) to 54% (BW270). Results indicate that social genetic effects affect variation in traits relevant for heavy pigs used in dry-cured hams manufacturing. Such effects should be exploited and taken into account in design of breeding programs for heavy pigs.
Collapse
Affiliation(s)
- R Rostellato
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animal and Environment, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - V Bonfatti
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Chiarot
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - P Carnier
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
11
|
Ellen ED, Rodenburg TB, Albers GAA, Bolhuis JE, Camerlink I, Duijvesteijn N, Knol EF, Muir WM, Peeters K, Reimert I, Sell-Kubiak E, van Arendonk JAM, Visscher J, Bijma P. The prospects of selection for social genetic effects to improve welfare and productivity in livestock. Front Genet 2014; 5:377. [PMID: 25426136 PMCID: PMC4227523 DOI: 10.3389/fgene.2014.00377] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/13/2014] [Indexed: 11/24/2022] Open
Abstract
Social interactions between individuals living in a group can have both positive and negative effects on welfare, productivity, and health of these individuals. Negative effects of social interactions in livestock are easier to observe than positive effects. For example, laying hens may develop feather pecking, which can cause mortality due to cannibalism, and pigs may develop tail biting or excessive aggression. Several studies have shown that social interactions affect the genetic variation in a trait. Genetic improvement of socially-affected traits, however, has proven to be difficult until relatively recently. The use of classical selection methods, like individual selection, may result in selection responses opposite to expected, because these methods neglect the effect of an individual on its group mates (social genetic effects). It has become clear that improvement of socially-affected traits requires selection methods that take into account not only the direct effect of an individual on its own phenotype but also the social genetic effects, also known as indirect genetic effects, of an individual on the phenotypes of its group mates. Here, we review the theoretical and empirical work on social genetic effects, with a focus on livestock. First, we present the theory of social genetic effects. Subsequently, we evaluate the evidence for social genetic effects in livestock and other species, by reviewing estimates of genetic parameters for direct and social genetic effects. Then we describe the results of different selection experiments. Finally, we discuss issues concerning the implementation of social genetic effects in livestock breeding programs. This review demonstrates that selection for socially-affected traits, using methods that target both the direct and social genetic effects, is a promising, but sometimes difficult to use in practice, tool to simultaneously improve production and welfare in livestock.
Collapse
Affiliation(s)
- Esther D Ellen
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University Wageningen, Netherlands
| | - Gerard A A Albers
- Hendrix Genetics, Research and Technology Centre Boxmeer, Netherlands
| | | | - Irene Camerlink
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; Adaptation Physiology Group, Wageningen University Wageningen, Netherlands
| | - Naomi Duijvesteijn
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; TOPIGS Research Centre IPG Beuningen, Netherlands
| | | | - William M Muir
- Department of Animal Science, Purdue University West Lafayette, IN, USA
| | - Katrijn Peeters
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands ; Hendrix Genetics, Research and Technology Centre Boxmeer, Netherlands
| | - Inonge Reimert
- Adaptation Physiology Group, Wageningen University Wageningen, Netherlands
| | - Ewa Sell-Kubiak
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| | | | | | - Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University Wageningen, Netherlands
| |
Collapse
|
12
|
Hidalgo AM, Bastiaansen JWM, Harlizius B, Knol EF, Lopes MS, de Koning DJ, Groenen MAM. Asian low-androstenone haplotype on pig chromosome 6 does not unfavorably affect production and reproduction traits. Anim Genet 2014; 45:874-7. [PMID: 25262849 DOI: 10.1111/age.12226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2014] [Indexed: 11/28/2022]
Abstract
European pigs that carry Asian haplotypes of a 1.94-Mbp region on pig chromosome 6 have lower levels of androstenone, one of the two main compounds causing boar taint. The objective of our study was to examine potential pleiotropic effects of the Asian low-androstenone haplotypes. A single nucleotide polymorphism marker, rs81308021, distinguishes the Asian from European haplotypes and was used to investigate possible associations of androstenone with production and reproduction traits. Eight traits were available from three European commercial breeds. For the two sow lines studied, a favorable effect on number of teats was detected for the low-androstenone haplotype. In one of these sow lines, a favorable effect on number of spermatozoa per ejaculation was detected for the low-androstenone haplotype. No unfavorable pleiotropic effects were found, which suggests that selection for low-androstenone haplotypes within the 1.94 Mbp would not unfavorably affect the other eight relevant traits.
Collapse
Affiliation(s)
- A M Hidalgo
- Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, Wageningen, 6700 AH, The Netherlands; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, Uppsala, 750 07, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Duijvesteijn N, Knol EF, Bijma P. Boar taint in entire male pigs: a genomewide association study for direct and indirect genetic effects on androstenone. J Anim Sci 2014; 92:4319-28. [PMID: 25149343 DOI: 10.2527/jas.2014-7863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Androstenone is one of the compounds causing boar taint of pork and is highly heritable (approximately 0.6). Recently, indirect genetic effects (IGE; also known as associative effects or social genetic effects) were found for androstenone, meaning that pen mates (boars) affect each other's androstenone level genetically. Similar to estimating variance components with a direct-indirect animal model, direct and indirect genetic SNP effects can be estimated for androstenone. This study aims to detect SNP with significant direct genetic effects and IGE on androstenone. The dataset consisted of 1,282 noncastrated boars (993 boars genotyped) from 184 groups of pen members. After quality control, 46,421 SNP were included in the analysis. One model for single-SNP regression was fitted, where both the direct SNP effect of the individual itself and the indirect SNP effects of its pen mates were included. None of the SNP (direct or indirect) were found genomewide significant. One QTL on SSC6 was chromosome-wide significant for the direct effect. A single SNP on SSC9 and 2 regions and a single SNP on SSC14 were found for the indirect effect. A backwards elimination method and haplotype analysis were used to quantify the variance explained by the SNP. The backwards elimination method identified 4 independent regions affecting androstenone. The QTL on SSC6 explained 2.1 and 2.6% of the phenotypic variance using the backwards elimination method or the haplotype analysis. The QTL on SSC14 explained 3.4 and 2.7% of the phenotypic variance using the backwards elimination method or the haplotype analysis. The single association on SSC9 explained 2.2% of the phenotypic variance. All significant QTL together explained 7 to 8% of phenotypic variance and 40 to 44% of the total genetic variance available for response to selection. Besides the newly discovered QTL and the confirmation of known QTL, this study also presents a methodology to model SNP for IGE.
Collapse
Affiliation(s)
- N Duijvesteijn
- TOPIGS Research Center IPG B.V., PO Box 43, 6640 AA Beuningen, The Netherlands Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - E F Knol
- TOPIGS Research Center IPG B.V., PO Box 43, 6640 AA Beuningen, The Netherlands
| | - P Bijma
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
14
|
Camerlink I, Bolhuis JE, Duijvesteijn N, van Arendonk JAM, Bijma P. Growth performance and carcass traits in pigs selected for indirect genetic effects on growth rate in two environments1. J Anim Sci 2014; 92:2612-9. [DOI: 10.2527/jas.2013-7220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- I. Camerlink
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
- Adaptation Physiology Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - J. E. Bolhuis
- Adaptation Physiology Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - N. Duijvesteijn
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
- TOPIGS Research Center IPG, PO Box 43, 6640 AA Beuningen, The Netherlands
| | - J. A. M. van Arendonk
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| | - P. Bijma
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
15
|
Sahadevan S, Gunawan A, Tholen E, Große-Brinkhaus C, Tesfaye D, Schellander K, Hofmann-Apitius M, Cinar MU, Uddin MJ. Pathway based analysis of genes and interactions influencing porcine testis samples from boars with divergent androstenone content in back fat. PLoS One 2014; 9:e91077. [PMID: 24614349 PMCID: PMC3948775 DOI: 10.1371/journal.pone.0091077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
One of the primary factors contributing to boar taint is the level of androstenone in porcine adipose tissues. A majority of the studies performed to identify candidate biomarkers for the synthesis of androstenone in testis tissues follow a reductionist approach, identifying and studying the effect of biomarkers individually. Although these studies provide detailed information on individual biomarkers, a global picture of changes in metabolic pathways that lead to the difference in androstenone synthesis is still missing. The aim of this work was to identify major pathways and interactions influencing steroid hormone synthesis and androstenone biosynthesis using an integrative approach to provide a bird's eye view of the factors causing difference in steroidogenesis and androstenone biosynthesis. For this purpose, we followed an analysis procedure merging together gene expression data from boars with divergent levels of androstenone and pathway mapping and interaction network retrieved from KEGG database. The interaction networks were weighted with Pearson correlation coefficients calculated from gene expression data and significant interactions and enriched pathways were identified based on these networks. The results show that 1,023 interactions were significant for high and low androstenone animals and that a total of 92 pathways were enriched for significant interactions. Although published articles show that a number of these enriched pathways were activated as a result of downstream signaling of steroid hormones, we speculate that the significant interactions in pathways such as glutathione metabolism, sphingolipid metabolism, fatty acid metabolism and significant interactions in cAMP-PKA/PKC signaling might be the key factors determining the difference in steroidogenesis and androstenone biosynthesis between boars with divergent androstenone levels in our study. The results and assumptions presented in this study are from an in-silico analysis done at the gene expression level and further laboratory experiments at genomic, proteomic or metabolomic level are necessary to validate these findings.
Collapse
Affiliation(s)
- Sudeep Sahadevan
- Institute of Animal Science, University of Bonn, Bonn, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
| | - Asep Gunawan
- Institute of Animal Science, University of Bonn, Bonn, Germany
- Department of Animal Production and Technology, Faculty of Animal Science, Bogor Agricultural University, Bogor, Indonesia
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | | | - Dawit Tesfaye
- Institute of Animal Science, University of Bonn, Bonn, Germany
| | | | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), Bonn, Germany
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
16
|
Reimert I, Rodenburg TB, Ursinus WW, Duijvesteijn N, Camerlink I, Kemp B, Bolhuis JE. Backtest and novelty behavior of female and castrated male piglets, with diverging social breeding values for growth. J Anim Sci 2013; 91:4589-97. [PMID: 23942705 DOI: 10.2527/jas.2013-6673] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pigs housed together in a group influence each other's growth. Part of this effect is genetic and can be represented in a social breeding value. It is unknown, however, which traits are associated with social breeding values. The aim of this study was, therefore, to investigate whether personality and response to novelty could be associated with social breeding values for growth in piglets. Female and castrated male piglets from 80 litters, with either an estimated relative positive or negative social breeding value (+SBV or -SBV) for growth, were individually tested in a backtest and novel environment test, and group-wise in a novel object (i.e., a feeder with feed) test and human approach test. All tests were performed during the suckling period. No differences between +SBV and -SBV piglets were found for the frequency and latency of struggling and vocalizing in the backtest (at least, P > 0.30). In the novel object test, piglets with a +SBV for growth touched the feeder faster than piglets with -SBV for growth (P = 0.01) and were more frequently present near the person in the human approach test (P < 0.01). No behavioral differences between +SBV and -SBV piglets were found in the novel environment test (at least, P > 0.40), but piglets that struggled more in the backtest walked more in this test (P = 0.02). Behavior was affected by gender in each test. Female piglets were faster than castrated male piglets to start struggling in the backtest (P = 0.047). In the novel object test, females were faster than males to touch the feeder and sample the feed. In the human approach test, they were also faster than male piglets to touch a person (all, P < 0.001). Females were also more frequently present near the feeder (P < 0.001) and person (P = 0.03). In the novel environment test, female piglets explored the floor more (P = 0.046), produced less low- (P = 0.04) and high-pitched vocalizations (P = 0.02), and defecated (P = 0.08) and urinated less than male piglets (P < 0.01). It was concluded that +SBV and -SBV piglets do not differ in their response to the backtest, and only subtle differences were found in their response to novelty. More research is warranted to identify the traits underlying SBV for growth in pigs. Moreover, castrated male piglets seemed to react more fearfully to each test than female piglets.
Collapse
Affiliation(s)
- I Reimert
- Wageningen University, Department of Animal Sciences, Adaptation Physiology Group, PO Box 338, 6700 AH Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
Peeters K, Ellen ED, Bijma P. Using pooled data to estimate variance components and breeding values for traits affected by social interactions. Genet Sel Evol 2013; 45:27. [PMID: 23890200 PMCID: PMC3818455 DOI: 10.1186/1297-9686-45-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 05/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Through social interactions, individuals affect one another's phenotype. In such cases, an individual's phenotype is affected by the direct (genetic) effect of the individual itself and the indirect (genetic) effects of the group mates. Using data on individual phenotypes, direct and indirect genetic (co)variances can be estimated. Together, they compose the total genetic variance that determines a population's potential to respond to selection. However, it can be difficult or expensive to obtain individual phenotypes. Phenotypes on traits such as egg production and feed intake are, therefore, often collected on group level. In this study, we investigated whether direct, indirect and total genetic variances, and breeding values can be estimated from pooled data (pooled by group). In addition, we determined the optimal group composition, i.e. the optimal number of families represented in a group to minimise the standard error of the estimates. METHODS This study was performed in three steps. First, all research questions were answered by theoretical derivations. Second, a simulation study was conducted to investigate the estimation of variance components and optimal group composition. Third, individual and pooled survival records on 12 944 purebred laying hens were analysed to investigate the estimation of breeding values and response to selection. RESULTS Through theoretical derivations and simulations, we showed that the total genetic variance can be estimated from pooled data, but the underlying direct and indirect genetic (co)variances cannot. Moreover, we showed that the most accurate estimates are obtained when group members belong to the same family. Additional theoretical derivations and data analyses on survival records showed that the total genetic variance and breeding values can be estimated from pooled data. Moreover, the correlation between the estimated total breeding values obtained from individual and pooled data was surprisingly close to one. This indicates that, for survival in purebred laying hens, loss in response to selection will be small when using pooled instead of individual data. CONCLUSIONS Using pooled data, the total genetic variance and breeding values can be estimated, but the underlying genetic components cannot. The most accurate estimates are obtained when group members belong to the same family.
Collapse
Affiliation(s)
- Katrijn Peeters
- Animal Breeding and Genomics Centre, Wageningen University, P,O, Box 338, 6700 AH Wageningen, The Netherlands.
| | | | | |
Collapse
|