1
|
Yu J, Li X, Qi X, Ding Z, Su S, Yu L, Zhou L, Li Y. Translatomics reveals the role of dietary calcium addition in regulating muscle fat deposition in pigs. Sci Rep 2024; 14:12295. [PMID: 38811812 PMCID: PMC11136974 DOI: 10.1038/s41598-024-62986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
Intramuscular fat (IMF) in pork holds significant importance for economic performance within the pig industry and dietary calcium supplementation enhances the accumulation of intramuscular fat. Additionally, calcium ions inhibit translation and reduce protein synthesis. However, the mechanism by which calcium regulates IMF deposition in muscle through translation remains largely unknown. In this study, we compared the ribosome profiles of the longissimus dorsi muscles of Duroc × Landrace × Large white pigs from the normal calcium (NC) group or calcium supplement (HC) group by Ribo-seq, and RNA-seq. By integrating multiple-omics analysis, we further discovered 437 genes that were transcriptionally unchanged but translationally altered and these genes were significantly enriched in the oxidative phosphorylation signaling pathway. Furthermore, experimental data showed that inhibiting the expression of COX10 and mtND4L increased triglyceride accumulation in C2C12 cells, providing new targets for intramuscular fat deposition. Finally, this work links dietary calcium, translation regulation and IMF deposition, providing a new strategy for both meat quality and economic performance within the pig industry.
Collapse
Affiliation(s)
- Jingsu Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xiangling Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xinyu Qi
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Zhaoxuan Ding
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Songtao Su
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lin Yu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lei Zhou
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| | - Yixing Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
2
|
Kuraz Abebe B, Wang J, Guo J, Wang H, Li A, Zan L. A review of the role of epigenetic studies for intramuscular fat deposition in beef cattle. Gene 2024; 908:148295. [PMID: 38387707 DOI: 10.1016/j.gene.2024.148295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Intramuscular fat (IMF) deposition profoundly influences meat quality and economic value in beef cattle production. Meanwhile, contemporary developments in epigenetics have opened new outlooks for understanding the molecular basics of IMF regulation, and it has become a key area of research for world scholars. Therefore, the aim of this paper was to provide insight and synthesis into the intricate relationship between epigenetic mechanisms and IMF deposition in beef cattle. The methodology involves a thorough analysis of existing literature, including pertinent books, academic journals, and online resources, to provide a comprehensive overview of the role of epigenetic studies in IMF deposition in beef cattle. This review summarizes the contemporary studies in epigenetic mechanisms in IMF regulation, high-resolution epigenomic mapping, single-cell epigenomics, multi-omics integration, epigenome editing approaches, longitudinal studies in cattle growth, environmental epigenetics, machine learning in epigenetics, ethical and regulatory considerations, and translation to industry practices from perspectives of IMF deposition in beef cattle. Moreover, this paper highlights DNA methylation, histone modifications, acetylation, phosphorylation, ubiquitylation, non-coding RNAs, DNA hydroxymethylation, epigenetic readers, writers, and erasers, chromatin immunoprecipitation followed by sequencing, whole genome bisulfite sequencing, epigenome-wide association studies, and their profound impact on the expression of crucial genes governing adipogenesis and lipid metabolism. Nutrition and stress also have significant influences on epigenetic modifications and IMF deposition. The key findings underscore the pivotal role of epigenetic studies in understanding and enhancing IMF deposition in beef cattle, with implications for precision livestock farming and ethical livestock management. In conclusion, this review highlights the crucial significance of epigenetic pathways and environmental factors in affecting IMF deposition in beef cattle, providing insightful information for improving the economics and meat quality of cattle production.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; Department of Animal Science, Werabe University, P.O. Box 46, Werabe, Ethiopia
| | - Jianfang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Juntao Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
3
|
Yang Y, Wang X, Wang S, Chen Q, Li M, Lu S. Identification of Potential Sex-Specific Biomarkers in Pigs with Low and High Intramuscular Fat Content Using Integrated Bioinformatics and Machine Learning. Genes (Basel) 2023; 14:1695. [PMID: 37761835 PMCID: PMC10531182 DOI: 10.3390/genes14091695] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Intramuscular fat (IMF) content is a key determinant of pork quality. Controlling the genetic and physiological factors of IMF and the expression patterns of various genes is important for regulating the IMF content and improving meat quality in pig breeding. Growing evidence has suggested the role of genetic factors and breeds in IMF deposition; however, research on the sex factors of IMF deposition is still lacking. The present study aimed to identify potential sex-specific biomarkers strongly associated with IMF deposition in low- and high-IMF pig populations. The GSE144780 expression dataset of IMF deposition-related genes were obtained from the Gene Expression Omnibus. Initially, differentially expressed genes (DEGs) were detected in male and female low-IMF (162 DEGs, including 64 up- and 98 down-regulated genes) and high-IMF pigs (202 DEGs, including 147 up- and 55 down-regulated genes). Moreover, hub genes were screened via PPI network construction. Furthermore, hub genes were screened for potential sex-specific biomarkers using the least absolute shrinkage and selection operator machine learning algorithm, and sex-specific biomarkers in low-IMF (troponin I (TNNI1), myosin light chain 9(MYL9), and serpin family C member 1(SERPINC1)) and high-IMF pigs (CD4 molecule (CD4), CD2 molecule (CD2), and amine oxidase copper-containing 2(AOC2)) were identified, and then verified by quantitative real-time PCR (qRT-PCR) in semimembranosus muscles. Additionally, the gene set enrichment analysis and single-sample gene set enrichment analysis of hallmark gene sets were collectively performed on the identified biomarkers. Finally, the transcription factor-biomarker and lncRNA-miRNA-mRNA (biomarker) networks were predicted. The identified potential sex-specific biomarkers may provide new insights into the molecular mechanisms of IMF deposition and the beneficial foundation for improving meat quality in pig breeding.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (X.W.); (S.W.); (Q.C.); (M.L.)
| |
Collapse
|
4
|
Baik M, Lee J, Kim SY, Ranaweera KKTN. - Invited Review - Factors affecting beef quality and nutrigenomics of intramuscular adipose tissue deposition. Anim Biosci 2023; 36:350-363. [PMID: 36634658 PMCID: PMC9899583 DOI: 10.5713/ab.22.0380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023] Open
Abstract
Beef quality is characterized by marbling (marbling degree and marbling fineness), physiochemical (shear force, meat color, fat color, texture, and maturity), and sensory (tenderness, flavor, juiciness, taste, odor, and appearance) traits. This paper summarizes and addresses beef-quality characteristics and the beef-grading systems in Korea, Japan, the USA, and Australia. This paper summarizes recent research progresses on the genetic and nutritional factors that affect beef quality. Intramuscular (i.m.) adipose tissue deposition or marbling is a major determinant of beef quality. This paper addresses the mechanisms of i.m. adipose tissue deposition focused on adipogenesis and lipogenesis. We also address selected signaling pathways associated with i.m. adipose tissue deposition. Nutrients contribute to the cellular response and phenotypes through gene expression and metabolism. This paper addresses control of gene expression through several nutrients (carbohydrates, fat/fatty acids, vitamins, etc.) for i.m. adipose tissue deposition. Several transcription factors responsible for gene expression via nutrients are addressed. We introduce the concept of genome-based precision feeding in Korean cattle.
Collapse
Affiliation(s)
- Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea,Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354,
Korea,Corresponding Author: Myunggi Baik, Tel: +82-2-880-4809, Fax: +82-2-873-2271, E-mail:
| | - Jaesung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | - Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826,
Korea
| | | |
Collapse
|
5
|
Deng M, Xiao Z, Liu G, Sun B, Guo Y, Zou X, Liu D, Yang Z, Li Y. The effects of fermented pineapple residue on growth performance, meat quality, and rumen microbiota of fattening Simmental bull. Front Microbiol 2022; 13:942208. [PMID: 36188004 PMCID: PMC9519060 DOI: 10.3389/fmicb.2022.942208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, silage Pennisetum sinese Roxb-based diet was replaced with fermented pineapple residue (FPR) at the replacement ratio of 0% (CON), 25% (T25), and 50% (T50) in fattening Simmental bulls for 30 days to evaluate the effects of FPR on growth performance, serum indexes, and ruminal characteristics. A total of 30 Simmental bulls (546 ± 44 kg initial BW) were allocated to three groups according to a completely randomized design. On day 30, the slaughter performance and meat quality were determined. Rumen fluids were collected for analyzing the rumen fermentation parameters and microbiota composition on day 30. The results showed that the average daily weight gain increased (P < 0.05) as the proportion of FPR rose. Within treatments, the T25 group reached more profit (5.34 RMB per day per bull) than CON while T50 was 3.69. The content of crude fat, cysteine, and proline in the muscle of T50 increased significantly (P < 0.05). The amounts of tyrosine, proline, and phenylalanine were significantly increased in the T25 (P < 0.05). The beta diversity analysis showed significant differences among the rumen bacterial flora of each group (P < 0.05). In the T25 group, the relative abundance of Spirochaetes decreased significantly (P < 0.05). The relative abundance of Lachnospiraceae_bacterium_RM44 was significantly lower (P < 0.05). Thus, FPR could improve the growth performance, economic benefits, and meat quality without adverse effects on ruminal characteristics.
Collapse
Affiliation(s)
- Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zupeng Xiao
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Zhenwei Yang
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Silva-Vignato B, Cesar ASM, Afonso J, Moreira GCM, Poleti MD, Petrini J, Garcia IS, Clemente LG, Mourão GB, Regitano LCDA, Coutinho LL. Integrative Analysis Between Genome-Wide Association Study and Expression Quantitative Trait Loci Reveals Bovine Muscle Gene Expression Regulatory Polymorphisms Associated With Intramuscular Fat and Backfat Thickness. Front Genet 2022; 13:935238. [PMID: 35991540 PMCID: PMC9386181 DOI: 10.3389/fgene.2022.935238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding the architecture of gene expression is fundamental to unravel the molecular mechanisms regulating complex traits in bovine, such as intramuscular fat content (IMF) and backfat thickness (BFT). These traits are economically important for the beef industry since they affect carcass and meat quality. Our main goal was to identify gene expression regulatory polymorphisms within genomic regions (QTL) associated with IMF and BFT in Nellore cattle. For that, we used RNA-Seq data from 193 Nellore steers to perform SNP calling analysis. Then, we combined the RNA-Seq SNP and a high-density SNP panel to obtain a new dataset for further genome-wide association analysis (GWAS), totaling 534,928 SNPs. GWAS was performed using the Bayes B model. Twenty-one relevant QTL were associated with our target traits. The expression quantitative trait loci (eQTL) analysis was performed using Matrix eQTL with the complete SNP dataset and 12,991 genes, revealing a total of 71,033 cis and 36,497 trans-eQTL (FDR < 0.05). Intersecting with QTL for IMF, we found 231 eQTL regulating the expression levels of 117 genes. Within those eQTL, three predicted deleterious SNPs were identified. We also identified 109 eQTL associated with BFT and affecting the expression of 54 genes. This study revealed genomic regions and regulatory SNPs associated with fat deposition in Nellore cattle. We highlight the transcription factors FOXP4, FOXO3, ZSCAN2, and EBF4, involved in lipid metabolism-related pathways. These results helped us to improve our knowledge about the genetic architecture behind important traits in cattle.
Collapse
Affiliation(s)
- Bárbara Silva-Vignato
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Aline Silva Mello Cesar
- Department of Agroindustry, Food, and Nutrition, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | | | | | - Mirele Daiana Poleti
- College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Juliana Petrini
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Ingrid Soares Garcia
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Luan Gaspar Clemente
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | - Gerson Barreto Mourão
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, College of Agriculture “Luiz de Queiroz”, University of São Paulo, Piracicaba, Brazil
- *Correspondence: Luiz Lehmann Coutinho,
| |
Collapse
|
7
|
Schettini GP, Peripolli E, Alexandre PA, dos Santos WB, Pereira ASC, de Albuquerque LG, Baldi F, Curi RA. Transcriptome Profile Reveals Genetic and Metabolic Mechanisms Related to Essential Fatty Acid Content of Intramuscular Longissimus thoracis in Nellore Cattle. Metabolites 2022; 12:metabo12050471. [PMID: 35629975 PMCID: PMC9144777 DOI: 10.3390/metabo12050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Beef is a source of essential fatty acids (EFA), linoleic (LA) and alpha-linolenic (ALA) acids, which protect against inflammatory and cardiovascular diseases in humans. However, the intramuscular EFA profile in cattle is a complex and polygenic trait. Thus, this study aimed to identify potential regulatory genes of the essential fatty acid profile in Longissimus thoracis of Nellore cattle finished in feedlot. Forty-four young bulls clustered in four groups of fifteen animals with extreme values for each FA were evaluated through differentially expressed genes (DEG) analysis and two co-expression methodologies (WGCNA and PCIT). We highlight the ECHS1, IVD, ASB5, and ERLIN1 genes and the TF NFIA, indicated in both FA. Moreover, we associate the NFYA, NFYB, PPARG, FASN, and FADS2 genes with LA, and the RORA and ELOVL5 genes with ALA. Furthermore, the functional enrichment analysis points out several terms related to FA metabolism. These findings contribute to our understanding of the genetic mechanisms underlying the beef EFA profile in Nellore cattle finished in feedlot.
Collapse
Affiliation(s)
- Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
- Correspondence:
| | - Elisa Peripolli
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Pâmela Almeida Alexandre
- Commonwealth Scientific and Industrial Research Organization, Agriculture & Food, St Lucia, QLD 4067, Australia;
| | - Wellington Bizarria dos Santos
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Angélica Simone Cravo Pereira
- School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (E.P.); (A.S.C.P.)
| | - Lúcia Galvão de Albuquerque
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Fernando Baldi
- School of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.B.d.S.); (L.G.d.A.); (F.B.)
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu 18618-681, SP, Brazil;
| |
Collapse
|
8
|
Schettini GP, Peripolli E, Alexandre PA, Dos Santos WB, da Silva Neto JB, Pereira ASC, de Albuquerque LG, Curi RA, Baldi F. Transcriptomic profile of longissimus thoracis associated with fatty acid content in Nellore beef cattle. Anim Genet 2022; 53:264-280. [PMID: 35384007 DOI: 10.1111/age.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/25/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
The beef fatty acid (FA) profile has the potential to impact human health, and displays polygenic and complex features. This study aimed to identify the transcriptomic FA profile in the longissimus thoracis muscle in Nellore beef cattle finished in feedlot. Forty-four young bulls were sampled to assess the beef FA profile by considering 14 phenotypes and including differentially expressed genes (DEG), co-expressed (COE), and differentially co-expressed genes (DCO) analyses. All samples (n = 44) were used for COE analysis, whereas 30 samples with extreme phenotypes for the beef FA profile were used for DEG and DCO. A total of 912 DEG were identified, and the polyunsaturated (n = 563) and unsaturated ω-3 (n = 346) FA sums groups were the most frequently observed. The COE analyses identified three modules, of which the blue module (n = 1776) was correlated with eight of 14 FA phenotypes. Also, 759 DCO genes were listed, and the oleic acid (n = 358) and monounsaturated fatty acids sum (n = 120) were the most frequent. Furthermore, 243 and 13, 319 and seven, and 173 and 12 gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were enriched respectively for the DEG, COE, and DCO analyses. Combining the results, we highlight the unexplored GIPC2, ASB5, and PPP5C genes in cattle. Besides LIPE and INSIG2 genes in COE modules, the ACSL3, ECI1, DECR2, FITM1, and SDHB genes were signaled in at least two analyses. These findings contribute to understand the genetic mechanisms underlying the beef FA profile in Nellore beef cattle finished in feedlot.
Collapse
Affiliation(s)
- Gustavo Pimenta Schettini
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Elisa Peripolli
- School of Veterinary Medicine and Animal Science (FMVZ), University of São Paulo (USP), Pirassununga, Brazil
| | - Pâmela Almeida Alexandre
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture & Food, Birsbane, Queensland, Australia
| | | | - João Barbosa da Silva Neto
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Lúcia Galvão de Albuquerque
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Rogério Abdallah Curi
- School of Veterinary Medicine and Animal Science (FMVZ), São Paulo State University (UNESP), Botucatu, Brazil
| | - Fernando Baldi
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
9
|
Li J, Yang C, Ran J, Yu C, Yin L, Li Z, Liu Y. The age-dependent variations for fatty acid composition and sensory quality of chicken meat and associations between gene expression patterns and meat quality. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Li J, Yang C, Ren P, Lin Z, Zhang D, Jiang X, Wang L, Liu Y. Transcriptomics analysis of Daheng broilers reveals that PLIN2 regulates chicken preadipocyte proliferation, differentiation and apoptosis. Mol Biol Rep 2021; 48:7985-7997. [PMID: 34716501 DOI: 10.1007/s11033-021-06831-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Intramuscular fat content, an important meat quality trait, strongly affects flavor, juiciness, and tenderness. Sex hormones regulate lipid metabolism, and female hormones stimulate fat deposition, thereby making the female chickens always fatter than males. In this study, the effect of sex on IMF deposition was screened following transcriptomics in chickens. METHODS AND RESULTS Results confirmed significantly higher IMF content of 150-day female chickens as compared to the male chickens. The female chickens manifested higher serum TG, LDL-C, and VLDL, and significantly lower HDL-C contents than male chickens. Moreover, differential expression of genes involved in lipid metabolism were obtained in the muscle and liver between female and male chicken, which could partly interpret the possible reasons for the sex-mediated differences of IMF content. Cellular results revealed that inhibition of PLIN2 significantly inhibited chicken preadipocyte proliferation and induces apoptosis of preadipocytes, as well as promoted adipocyte differentiation. CONCLUSIONS According to our results, PLIN2 may be considered as a molecular marker for poultry meat quality and applying this gene in early breed selection.
Collapse
Affiliation(s)
- Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Chaowu Yang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Peng Ren
- Faculty of Life Sciences, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Donghao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Xiaosong Jiang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610066, Sichuan, China
| | - Li Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China.
| |
Collapse
|
11
|
Wang J, Yang Y, Xing B, Chen J, Lu Q, Zhang J, Ren Q, Ma Q, Guo H, Cao H. Castration induced circRNA expressional changes in subcutaneous adipose tissue of male pigs. Anim Sci J 2021; 92:e13648. [PMID: 34676628 DOI: 10.1111/asj.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
Circular RNAs (circRNAs) participated in regulation of lipid metabolism; however, its functional role on castration-induced lipid deposition has not been deeply researched. So in this research, we firstly compared circRNAs expressional differences in subcutaneous adipose tissue between intact and castrated male Huainan pigs. A total of 6116 differentially expressed circRNAs (DECs) were detected between these two groups (|log2 foldchange| ≥ 1 and padj ≤ 0.05); GO and KEGG analysis showed that their parent genes were mainly enriched in metabolism-related pathway. And TGF-beta, insulin, AMPK, and MAPK pathways might play vital role in castration-induced lipid deposition. The miRNAs enriched in the constructed circRNA-miRNA network were mainly participated in adipogenesis and lipid metabolism, such as miR-143a-3p, miR-378, and miR-195. And it was verified that testosterone upregulated miR-181a but downregulated circ_0005912 expression in a dose-dependent manner in porcine intramuscular adipocytes, and overexpression of miR-181a inhibited circ_0005912. Taken together, these DECs may participate in the regulation of lipid metabolism after castration by reaction with miRNAs, which indicated the novel role of circRNAs in castration-induced lipid deposition.
Collapse
Affiliation(s)
- Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Junfeng Chen
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxia Lu
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jiaqing Zhang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiaoling Ren
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiang Ma
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hongxia Guo
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hai Cao
- Henan Xing Rui Agriculture and Animal Husbandry Technology Co., Ltd, Xinyang, China
| |
Collapse
|
12
|
Xiong L, Pei J, Wu X, Kalwar Q, Yan P, Guo X. Effect of Gender to Fat Deposition in Yaks Based on Transcriptomic and Metabolomics Analysis. Front Cell Dev Biol 2021; 9:653188. [PMID: 34504837 PMCID: PMC8421605 DOI: 10.3389/fcell.2021.653188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022] Open
Abstract
Fat deposition in yaks plays an important part in survival, multiplication, and meat quality. In this work, the characteristic of fat deposition in male yaks (MYs) and female yaks (FYs) and the regulations of gender to yak fat deposition were explored by mRNA-Seq and non-targeted metabolomics analyses. FYs possessed a higher body fat rate (BFR) of visceral fat, fat content in longissimus dorsi (LD) and liver, and subcutaneous fat thickness (p < 0.05). The fat and cholesterol synthesis in liver and the fat transport in FY blood increased. The fat metabolism in yaks is the combined effect of carbohydrate, fatty acid, and amino acid metabolism by tricarboxylic acid (TCA) cycle, and an increase of triglyceride (TG) synthesis was accompanied by an increase of steroid synthesis. The high levels of myo-inositol and cortisol (COR) (p < 0.01) activated the calcium signaling in FY subcutaneous fat, followed by the increase of adipocyte secretion, and resulted in more leptin (LEP) secretion (p < 0.01). Then peroxisome proliferator-activated receptor (PPAR) signaling was activated by the focal adhesions and ECM-receptor interaction. Finally, the TG and steroid synthesis increased by the expression regulation of ME1, SCD, ELOVL6, DGAT2, DBI, LPL, CPT1, PLIN1, LIPA, DHCR24, and SQLE gene. The above genes can be considered as the candidate genes for yak with higher fat amount in molecular breeding in the future. This study can provide a theoretical basis for improving the meat quality and breeding of yaks.
Collapse
Affiliation(s)
- Lin Xiong
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Qudratullah Kalwar
- Department of Animal Reproduction, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, China
| |
Collapse
|
13
|
Whon TW, Kim HS, Shin N, Jung ES, Tak EJ, Sung H, Jung M, Jeong Y, Hyun D, Kim PS, Jang YK, Lee CH, Bae J. Male castration increases adiposity via small intestinal microbial alterations. EMBO Rep 2021; 22:e50663. [PMID: 33225575 PMCID: PMC7788444 DOI: 10.15252/embr.202050663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/21/2023] Open
Abstract
Castration of young males is widely used in the cattle industry to improve meat quality, but the mechanism linking hypogonadism and host metabolism is not clear. Here, we use metataxonomic and metabolomic approaches to evaluate the intestinal microbiota and host metabolism in male, castrated male (CtM), and female cattle. After pubescence, the CtM cattle harbor distinct ileal microbiota dominated by the family Peptostreptococcaceae and exhibit distinct serum and muscle amino acid profiles (i.e., highly abundant branched-chain amino acids), with increased extra- and intramuscular fat storage. We also evaluate the causative factor(s) that underpin the alteration of the intestinal microbiota and host metabolic phenotype in response to hypogonadism. Castration of male mice phenocopies both the intestinal microbial alterations and obese-prone metabolism observed in cattle. Antibiotic treatment and fecal microbiota transplantation experiments in a mouse model confirm that the intestinal microbial alterations associated with hypogonadism are a key contributor to the obese phenotype in the CtM animals. Collectively, targeting the gut microbiota is a potential therapeutic strategy for the treatment of both hypogonadism and obesity.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
- Present address:
Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuKorea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Na‐Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
- Present address:
Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeup‐si, Jeollabuk‐doKorea
| | - Eun Sung Jung
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Euon Jung Tak
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Hojun Sung
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Mi‐Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Yun‐Seok Jeong
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Dong‐Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| | - Yu Kyung Jang
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulKorea
| | - Jin‐Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of BiologyKyung Hee UniversitySeoulKorea
| |
Collapse
|
14
|
Bazile J, Jaffrezic F, Dehais P, Reichstadt M, Klopp C, Laloe D, Bonnet M. Molecular signatures of muscle growth and composition deciphered by the meta-analysis of age-related public transcriptomics data. Physiol Genomics 2020; 52:322-332. [PMID: 32657225 DOI: 10.1152/physiolgenomics.00020.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The lean-to-fat ratio is a major issue in the beef meat industry from both carcass and meat production perspectives. This industrial perspective has motivated meat physiologists to use transcriptomics technologies to decipher mechanisms behind fat deposition within muscle during the time course of muscle growth. However, synthetic biological information from this volume of data remains to be produced to identify mechanisms found in various breeds and rearing practices. We conducted a meta-analysis on 10 transcriptomic data sets stored in public databases, from the longissimus thoracis of five different bovine breeds divergent by age. We updated gene identifiers on the last version of the bovine genome (UCD1.2), and the 715 genes common to the 10 studies were subjected to the meta-analysis. Of the 238 genes differentially expressed (DEG), we identified a transcriptional signature of the dynamic regulation of glycolytic and oxidative metabolisms that agrees with a known shift between those two pathways from the animal puberty. We proposed some master genes of the myogenesis, namely MYOG and MAPK14, as probable regulators of the glycolytic and oxidative metabolisms. We also identified overexpressed genes related to lipid metabolism (APOE, LDLR, MXRA8, and HSP90AA1) that may contribute to the expected enhanced marbling as age increases. Lastly, we proposed a transcriptional signature related to the induction (YBX1) or repression (MAPK14, YWAH, ERBB2) of the commitment of myogenic progenitors into the adipogenic lineage. The relationships between the abundance of the identified mRNA and marbling values remain to be analyzed in a marbling biomarkers discovery perspectives.
Collapse
Affiliation(s)
- Jeanne Bazile
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Florence Jaffrezic
- INRAE, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Patrice Dehais
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France.,SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Matthieu Reichstadt
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France.,SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Denis Laloe
- INRAE, UMR1313 Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Muriel Bonnet
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| |
Collapse
|
15
|
Transcriptome profiling of longissimus lumborum in Holstein bulls and steers with different beef qualities. PLoS One 2020; 15:e0235218. [PMID: 32584890 PMCID: PMC7316285 DOI: 10.1371/journal.pone.0235218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
Previous research regarding Holstein cows has mainly focused on increasing milk yield. However, in order to maximize the economical profits of Holstein cattle farming, it is necessary to fully take advantage of Holstein bulls to produce high-grade beef. The present study aims to investigate different transcriptomic profiling of Holstein bulls and steers, via high-throughput RNA-sequencing (RNA-seq). The growth and beef quality traits of Holstein steers and bulls were characterized via assessment of weight, rib eye area, marbling score, shear force and intramuscular fat percentage of the longissimus lumborum (LL) muscle. The results indicated that castration improved the meat quality, yet reduced the meat yield. Subsequently, RNA-seq of the LL muscle from Holstein steers and bulls revealed a total of 56 differentially expressed genes (DEGs). We performed the functional enrichment analysis in Gene Ontology (GO) annotations of the DEGs using GOseq R package software and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis using KOBAS tool. Through the integrated analysis of DEGs with reported QTLs and SNPs, seven promising candidate genes potentially affecting the beef quality of LL muscle following castration were discovered, including muscle structural protein coding genes (MYH1, MYH4, MYH10) and functional protein coding genes (GADL1, CYP2R1, EEPD1, SHISA3). Among them, MYH10, GADL1, CYP2R1, EEPD1 and SHISA3 were novel candidate genes associated with beef quality traits. Notably, EEPD1 was associated with both meat quality and reproduction traits, thus indicating its overlapping role in responding to hormone change, and subsequently inducing beef quality improvement. Our findings provide a complete dataset of gene expression profile of LL in Holstein bulls and steers, and will aid in understanding how castration influence meat yield and quality.
Collapse
|
16
|
Na SW, Park SJ, Hong SJ, Baik M. Transcriptome changes associated with fat deposition in the longissimus thoracis of Korean cattle following castration. J Anim Physiol Anim Nutr (Berl) 2020; 104:1637-1646. [PMID: 32533609 DOI: 10.1111/jpn.13393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/25/2020] [Accepted: 05/07/2020] [Indexed: 11/29/2022]
Abstract
The castration of bulls increases the intramuscular fat (IMF) content in skeletal muscle. However, the biological processes of IMF accumulation in skeletal muscle after castration are not completely understood at the molecular level. This study examined the global transcriptomic changes in the longissimus thoracis muscle (LT) of bulls following castration using RNA sequencing (RNA-Seq) and identified new genes or pathways associated with beef quality. Ten bulls and 10 steers castrated at 6 months of age were slaughtered at 26 and 32 months of age respectively. For transcriptome analysis, six LT samples from three bulls and three steers were selected based on age, carcass weight, carcass quantity and beef quality grades. Using RNA-Seq, transcriptomic profiles of the LT were compared between bulls and steers. In all, 640 of the 18,027 genes identified through RNA-Seq were differentially expressed genes (DEGs) between bulls and steers. Pathway analysis of these 640 DEGs showed significant (p < .05) changes in seven Kyoto Encyclopedia of Genes and Genomes pathways, and the most significant terms were complement and coagulation cascade pathways. The transcriptomic expression patterns of 10 genes in the complement and coagulation cascades were validated using all animals through quantitative real-time polymerase chain reaction analysis. In conclusion, transcriptome changes associated with the complement and coagulation cascade pathways provide novel insights into understanding molecular mechanisms responsible for IMF accumulation following castration in beef cattle.
Collapse
Affiliation(s)
- Sang Weon Na
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Seung Ju Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Soo Jong Hong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.,Institutes of Green Bio Science Technology, Pyeongchang-gun, South Korea
| |
Collapse
|
17
|
Silva LH, Rodrigues RT, Assis DE, Benedeti PD, Duarte MS, Chizzotti ML. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. J Proteomics 2019; 199:51-66. [DOI: 10.1016/j.jprot.2019.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 01/27/2023]
|
18
|
Picard B, Gagaoua M, Al Jammas M, Bonnet M. Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. J Proteomics 2019; 200:1-10. [PMID: 30894324 DOI: 10.1016/j.jprot.2019.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
This study analyzed the effect of gender on the abundances of 20 protein biomarkers of tenderness and/or intramuscular fat content in five muscles: Longissimus thoracis, previously identified as biomarkers of tenderness and/or intramuscular Semimembranosus, Rectus abdominis, Triceps brachii and Semitendinosus, from cows and steers of the Protected Designation Origin Maine Anjou. The protein abundances were quantified using Reverse Phase Protein Array with specific validated antibodies. Among the 20 studied proteins, the abundance of 8 biomarkers involved in energetic metabolism, contraction and cellular stress, was different according to gender. The gender effect was different depending on the muscle type with greater abundances in Semitendinosus, Rectus abdominis and Longissimus thoracis muscles. On the basis of animal characteristics and rearing factors, three rearing practices classes were identified for cows. Among the factors, fattening duration modified the abundance of 12 proteins mainly in Triceps brachii muscle. A positive correlation between the abundance of the small HSP20 and slaughter age was observed in the 5 muscles. Two proteins, Four and a half LIM domains 1 (FHL1) and Glycogen phosphorylase (PYGB) appeared to be muscle, gender and rearing practices independent. These results constitute valuable data to understand how to manage beef quality by controlling these different factors. SIGNIFICANCE: This study is the first to compare the relative abundance of 20 proteins previously identified as biomarkers of tenderness and/or intramuscular fat (IMF) content of beef meat between cows and steers among 5 different muscles. Its originality is in the use of Reverse Phase Protein Array for fast quantification of the proteins and the integration of data from rearing factors, carcass characteristics and biomarkers of meat qualities. The findings provide evidence for modulating biomarker levels by controlling the choice of animal type and rearing factors according to the type of muscle that would produce animals with the desired meat qualities.
Collapse
Affiliation(s)
- Brigitte Picard
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Mohammed Gagaoua
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France.
| | - Marwa Al Jammas
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| |
Collapse
|
19
|
Silva-Vignato B, Coutinho LL, Poleti MD, Cesar ASM, Moncau CT, Regitano LCA, Balieiro JCC. Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle. BMC Genomics 2019; 20:32. [PMID: 30630417 PMCID: PMC6329100 DOI: 10.1186/s12864-018-5345-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Positively correlated with carcass weight and animal growth, the ribeye area (REA) and the backfat thickness (BFT) are economic important carcass traits, which impact directly on producer's payment. The selection of these traits has not been satisfactory since they are expressed later in the animal's life and multigene regulated. So, next-generation technologies have been applied in this area to improve animal's selection and better understand the molecular mechanisms involved in the development of these traits. Correlation network analysis, performed by tools like WGCNA (Weighted Correlation Network Analysis), has been used to explore gene-gene interactions and gene-phenotype correlations. Thus, this study aimed to identify putative candidate genes and metabolic pathways that regulate REA and BFT by constructing a gene co-expression network using WGCNA and RNA sequencing data, to better understand genetic and molecular variations behind these complex traits in Nelore cattle. RESULTS The gene co-expression network analysis, using WGCNA, were built using RNA-sequencing data normalized by transcript per million (TPM) from 43 Nelore steers. Forty-six gene clusters were constructed, between them, three were positively correlated (p-value< 0.1) to the BFT (Green Yellow, Ivory, and Light Yellow modules) and, one cluster was negatively correlated (p-value< 0.1) with REA (Salmon module). The enrichment analysis performed by DAVID and WebGestalt (FDR 5%) identified eight Gene Ontology (GO) terms and three KEGG pathways in the Green Yellow module, mostly associated with immune response and inflammatory mechanisms. The enrichment of the Salmon module demonstrated 19 GO terms and 21 KEGG pathways, related to muscle energy metabolism, lipid metabolism, muscle degradation, and oxidative stress diseases. The Ivory and Light yellow modules have not shown significant results in the enrichment analysis. CONCLUSION With this study, we verified that inflammation and immune response pathways modulate the BFT trait. Energy and lipid metabolism pathways, highlighting fatty acid metabolism, were the central pathways associated with REA. Some genes, as RSAD2, EIF2AK2, ACAT1, and ACSL1 were considered as putative candidate related to these traits. Altogether these results allow us to a better comprehension of the molecular mechanisms that lead to muscle and fat deposition in bovine.
Collapse
Affiliation(s)
- Bárbara Silva-Vignato
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Luiz L Coutinho
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Mirele D Poleti
- College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Aline S M Cesar
- College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | | | | | - Júlio C C Balieiro
- College of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
20
|
Yang Z, Zhao X, Xiong X, Bao L, Pan K, Zhou S, Wen L, Xu L, Qu M. Uncovering the mechanism whereby dietary nicotinic acid increases the intramuscular fat content in finishing steers by RNA sequencing analysis. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an18205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In our previous study, we found that a higher dosage of nicotinic acid (NA) in the diet dramatically increases intramuscular fat (IMF) content and improves meat quality in finishing steers. We hypothesised that increased IMF results from the regulation of genes associated with adipogenesis. To address this hypothesis, RNA-seq was used to investigate gene-expression profiles of longissimus muscles from the same 16 cattle that were also used in our previous study and treated with or without dietary NA. Four cDNA libraries were constructed and sequenced. The repeatability and reproducibility of RNA-seq data were confirmed by quantitative reverse-transcription polymerase-chain reaction. In total, 123 differentially expressed genes (DEGs) were identified between longissimus muscles treated and those not treated with dietary NA. Of the 123 DEGs, 117 genes were upregulated by the NA treatment. These DEGs were enriched in 21 pathways, including the extracellular matrix (ECM) –receptor interaction, PPAR signalling pathway, adipocytokine signalling pathway and transforming growth factor-β signalling pathway, all of which are associated with lipid metabolism. Furthermore, candidate genes related to adipocyte differentiation and adipogenesis (PLIN1, PLIN2, ADPN, LEP, LCN2 and SOCS3), lipid metabolism (FABP4, RBP4, GAL, ANXA1, ANXA2 and PTX3) and fatty acid synthesis and esterification (ELOVL6, ACSM1, SOT1 and PTGIS) were upregulated in the NA group. Three genes involved in glucose metabolism (PGAM1, UGDH and GLUT3) were also transcriptionally upregulated. However, MYH4 that encodes glycolytic Type IIb muscle fibres was downregulated by dietary NA. These gene expression results indicated a confirmation of our hypothesis that dietary NA increases the IMF content of longissimus muscle through upregulating the expression of the genes related to adipocyte differentiation, adipogenesis and lipid and glucose metabolism.
Collapse
|
21
|
Park SJ, Beak SH, Jung DJS, Kim SY, Jeong IH, Piao MY, Kang HJ, Fassah DM, Na SW, Yoo SP, Baik M. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1043-1061. [PMID: 29879830 PMCID: PMC6039335 DOI: 10.5713/ajas.18.0310] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023]
Abstract
Intramuscular fat (IMF) content in skeletal muscle including the longissimus dorsi muscle (LM), also known as marbling fat, is one of the most important factors determining beef quality in several countries including Korea, Japan, Australia, and the United States. Genetics and breed, management, and nutrition affect IMF deposition. Japanese Black cattle breed has the highest IMF content in the world, and Korean cattle (also called Hanwoo) the second highest. Here, we review results of research on genetic factors (breed and sex differences and heritability) that affect IMF deposition. Cattle management factors are also important for IMF deposition. Castration of bulls increases IMF deposition in most cattle breeds. The effects of several management factors, including weaning age, castration, slaughter weight and age, and environmental conditions on IMF deposition are also reviewed. Nutritional factors, including fat metabolism, digestion and absorption of feed, glucose/starch availability, and vitamin A, D, and C levels are important for IMF deposition. Manipulating IMF deposition through developmental programming via metabolic imprinting is a recently proposed nutritional method to change potential IMF deposition during the fetal and neonatal periods in rodents and domestic animals. Application of fetal nutritional programming to increase IMF deposition of progeny in later life is reviewed. The coordination of several factors affects IMF deposition. Thus, a combination of several strategies may be needed to manipulate IMF deposition, depending on the consumer’s beef preference. In particular, stage-specific feeding programs with concentrate-based diets developed by Japan and Korea are described in this article.
Collapse
Affiliation(s)
- Seung Ju Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seok-Hyeon Beak
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da Jin Sol Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Yeob Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - In Hyuk Jeong
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Min Yu Piao
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeok Joong Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Dilla Mareistia Fassah
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Weon Na
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seon Pil Yoo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institutes of Green Bio Science Technology, Pyeongchang 25354, Korea
| |
Collapse
|
22
|
Fassah DM, Jeong JY, Baik M. Hepatic transcriptional changes in critical genes for gluconeogenesis following castration of bulls. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:537-547. [PMID: 29502393 PMCID: PMC5838326 DOI: 10.5713/ajas.17.0875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 02/07/2023]
Abstract
Objective This study was performed to understand transcriptional changes in the genes involved in gluconeogenesis and glycolysis pathways following castration of bulls. Methods Twenty Korean bulls were weaned at average 3 months of age, and castrated at 6 months. Liver tissues were collected from bulls (n = 10) and steers (n = 10) of Korean cattle, and hepatic gene expression levels were measured using quantitative real-time polymerase chain reaction. We examined hepatic transcription levels of genes encoding enzymes for irreversible reactions in both gluconeogenesis and glycolysis as well as genes encoding enzymes for the utilization of several glucogenic substrates. Correlations between hepatic gene expression and carcass characteristics were performed to understand their associations. Results Castration increased the mRNA (3.6 fold; p<0.01) and protein levels (1.4 fold; p< 0.05) of pyruvate carboxylase and mitochondrial phosphoenolpyruvate carboxykinase genes (1.7 fold; p<0.05). Hepatic mRNA levels of genes encoding the glycolysis enzymes were not changed by castration. Castration increased mRNA levels of both lactate dehydrogenase A (1.5 fold; p<0.05) and lactate dehydrogenase B (2.2 fold; p<0.01) genes for lactate utilization. Castration increased mRNA levels of glycerol kinase (2.7 fold; p<0.05) and glycerol-3-phosphate dehydrogenase 1 (1.5 fold; p<0.05) genes for glycerol utilization. Castration also increased mRNA levels of propionyl-CoA carboxylase beta (mitochondrial) (3.5 fold; p<0.01) and acyl-CoA synthetase short chain family member 3 (1.3 fold; p = 0.06) genes for propionate incorporation. Conclusion Castration increases transcription levels of critical genes coding for enzymes involved in irreversible gluconeogenesis reactions from pyruvate to glucose and enzymes responsible for incorporation of glucogenic substrates including lactate, glycerol, and propionate. Hepatic gluconeogenic gene expression levels were associated with intramuscular fat deposition.
Collapse
Affiliation(s)
- Dilla Mareistia Fassah
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| |
Collapse
|
23
|
Albrecht E, Schering L, Liu Y, Komolka K, Kühn C, Wimmers K, Gotoh T, Maak S. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Factors influencing bovine intramuscular adipose tissue development and cellularity. J Anim Sci 2017; 95:2244-2254. [PMID: 28726981 DOI: 10.2527/jas.2016.1036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Appearance, distribution, and amount of intramuscular fat (IMF), often referred to as marbling, are highly variable and depend on environmental and genetic factors. On the molecular level, the concerted action of several drivers, including hormones, receptors, transcription factors, etc., determines where clusters of adipocytes arise. Therefore, the aim of future studies remains to identify such factors as biological markers of IMF to increase the ability to identify animals that deposit IMF early in age to increase efficiency of high-quality meat production. In an attempt to unravel the cellular development of marbling, we investigated the abundance of markers for adipogenic differentiation during fattening of cattle and the transcriptome of muscle and dissected IMF. Markers of different stages of adipogenic differentiation are well known from cell culture experiments. They are usually transiently expressed, such as delta-like homolog 1 (DLK1) that is abundant in preadipocytes and absent during differentiation to mature adipocytes. It is even a greater challenge to detect those markers in live animals. Within skeletal muscles, hyperplasia and hypertrophy of adipocytes can be observed throughout life. Therefore, development of marbling requires, on the cellular level, recruitment, proliferation, and differentiation of adipogenic cells to store excess energy in the form of lipids in new cells. In a recent study, we investigated the localization and abundance of early markers of adipogenic differentiation, such as DLK1, in bovine muscle tissue. An inverse relationship between IMF content and number of DLK1-positive cells in bovine muscle was demonstrated. Considering the cellular environment of differentiating adipocytes in muscle and the secretory action of adipocytes and myocytes, it becomes obvious that cross talk between cells via adipokines and myokines may be important for IMF development. Secreted proteins can act on other cells, inhibiting or stimulating their function via autocrine and paracrine actions. Such factors with potential influence on IMF, among them, agouti signaling protein and thrombospondin 4, were identified in transcriptome analyses and further investigated. Furthermore, results from transcriptome analysis indicate involvement of genes that are not directly related to adipogenesis and lipid metabolism, providing new candidates for future research.
Collapse
|
24
|
Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, Fassah DM, Moon YS. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle. J Anim Sci 2017; 95:2284-2303. [PMID: 28727015 DOI: 10.2527/jas.2016.1160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The intramuscular fat (IMF) content of the LM, also known as marbling, is particularly important in determining the price of beef in Korea, Japan, and the United States. Deposition of IMF is influenced by both genetic (e.g., breed, gender, and genotype) and nongenetic factors (e.g., castration, nutrition, stressors, animal weight, and age). Castration of bulls markedly increases deposition of IMF, resulting in improved beef quality. Here, we present a comparative gene expression approach between bulls and steers. Transcriptomic and proteomic studies have demonstrated that the combined effects of increases in lipogenesis, fatty acid uptake, and fatty acid esterification and decreased lipolysis are associated with increased IMF deposition in the LM. Several peripheral tissues (LM, adipose tissues, and the liver) are involved in lipid metabolism. Therefore, understanding the significance of the tissue network in lipid metabolism is important. Here, we demonstrate that lipid metabolism in LM tissues is crucial for IMF deposition, whereas lipid metabolism in the liver plays only a minor role. Metabolism of body fat and IMF deposition in bovine species has similarities with these processes in metabolic diseases, such as obesity in humans and rodents. Extensive studies on metabolic diseases using epigenome modification (DNA methylation, histone modification, and microRNA), microbial metagenomics, and metabolomics have been performed in humans and rodents, and new findings have been reported using these technologies. The importance of applying "omics" fields (epigenomics, metagenomics, and metabolomics) to the study of IMF deposition in cattle is described. New information on the molecular mechanisms of IMF deposition may be used to design nutritional or genetic methods to manipulate IMF deposition and to modify fatty acid composition in beef cattle. Applying nutrigenomics could maximize the expression of genetic potential of economically important traits (e.g., marbling) in animals.
Collapse
|
25
|
Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. PLoS One 2017; 12:e0185961. [PMID: 29073274 PMCID: PMC5657623 DOI: 10.1371/journal.pone.0185961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
Intramuscular fat (IMF) is known to enhance beef palatability and can be markedly increased by castration. However, there is little understanding of the molecular mechanism underlying the IMF deposition after castration of beef cattle. We hypothesize that genetic regulators function differently in IMF from bulls and steers. Therefore, after detecting serum testosterone and lipid parameter, as well as the contents of IMF at 6, 12, 18 and 24 months, we have investigated differentially expressed (DE) microRNAs (miRNAs) and mRNAs in IMF of bulls and steers at 24 months of age in Qinchuan cattle using next-generation sequencing, and then explored the possible biopathways regulating IMF deposition. Serum testosterone levels were significantly decreased in steers, whereas IMF content, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were markedly increased in steers. Comparing the results of steers and bulls, 580 upregulated genes and 1,120 downregulated genes in IMF tissues were identified as DE genes correlated with IMF deposition. The upregulated genes were mainly associated with lipid metabolism, lipogenesis and fatty acid transportation signalling pathways, and the downregulated genes were correlated with immune response and intracellular signal transduction. Concurrently, the DE miRNAs—important players in adipose tissue accumulation induced by castration—were also examined in IMF tissues; 52 DE miRNAs were identified. The expression profiles of selected genes and miRNAs were also confirmed by quantitative real-time PCR (qRT-PCR) assays. Using integrated analysis, we constructed the microRNA-target regulatory network which was supported by target validation using the dual luciferase reporter system. Moreover, Ingenuity Pathway Analysis (IPA) software was used to construct a molecular interaction network that could be involved in regulating IMF after castration. The detected molecular network is closely associated with lipid metabolism and adipocyte differentiation, which is supported by functional identification results of bta-let-7i on bovine preadipocytes. These results provided valuable insights into the molecular mechanisms of the IMF phenotype differences between steers and bulls.
Collapse
|
26
|
Dalrymple BP, Guo B. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Intramuscular fat deposition in ruminants and pigs: A transcriptomics perspective. J Anim Sci 2017; 95:2272-2283. [PMID: 28727003 DOI: 10.2527/jas.2016.1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The genomics era has led to an explosion in the study of gene expression in production animals. Intramuscular fat (IMF) content (both high and low) and composition are major quality attributes of meat, and more than 90 transcriptomic studies of IMF deposition have been undertaken in the ruminants and pigs since 2001, with the majority since 2008. The studies have implicated many genes involved in the control of adipogenesis, lipogenesis, and deposition of IMF, but there is relatively little consistency between the different studies. However, the genes encoding the synthesis enzymes acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase; the fatty acid binding protein 4; the potential signaling protein thyroid hormone responsive; and the regulators C/EBPα, PPARγ, and sterol regulatory element binding transcription factor 1 are supported by 5 or more of the 90 studies. By combining the results of all the studies, complete pathways for long-chain fatty acid (LCFA) and triacylglyceride (TAG) synthesis are identified, as are a number of genes encoding proteins probably associated with the storage of TAG and genes encoding a number of known and potential adipokines. In contrast, support for the association of lipolytic pathways with IMF percentage is less strong. Differences in experimental design-in particular, the age of the animals, the rate of IMF deposition at sampling, the past nutritional history of the animals used, and the complexities of using a tissue with mixed cell types-have contributed to the differences in results and interpretation. Biomarkers predictive of future IMF percentage, facilitating reaching optimal IMF content at slaughter, may have industry utility, but to be useful in animal biopsy and postslaughter samples, where multiple cell types are present, genes must be carefully chosen to ensure that they are informative about the expected processes. Despite these problems, candidate biomarkers for estimation of de novo intramuscular adipocyte LCFA synthesis, LCFA uptake rate by intramuscular adipocytes, and IMF deposition rate have been identified and examples of their utility have been published. However, further work is required to demonstrate how best to apply the assays for the benefit of the relevant livestock production industries.
Collapse
|
27
|
Comparison of fatty acid profiles and volatile compounds among quality grades and their association with carcass characteristics in longissimus dorsi and semimembranosus muscles of Korean cattle steer. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Jeong JY, Ibrahim M, Kim MJ, So K, Jeong YD, Park S, Kim M, Lee HJ. Comparisons of extracellular matrix-related gene expression levels in different adipose tissues from Korean cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
29
|
Bottje W, Kong BW, Reverter A, Waardenberg AJ, Lassiter K, Hudson NJ. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC SYSTEMS BIOLOGY 2017; 11:29. [PMID: 28235404 PMCID: PMC5324283 DOI: 10.1186/s12918-017-0396-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Background We contrast the pectoralis muscle transcriptomes of broilers selected from within a single genetic line expressing divergent feed efficiency (FE) in an effort to improve our understanding of the mechanistic basis of FE. Results Application of a virtual muscle model to gene expression data pointed to a coordinated reduction in slow twitch muscle isoforms of the contractile apparatus (MYH15, TPM3, MYOZ2, TNNI1, MYL2, MYOM3, CSRP3, TNNT2), consistent with diminishment in associated slow machinery (myoglobin and phospholamban) in the high FE animals. These data are in line with the repeated transition from red slow to white fast muscle fibres observed in agricultural species selected on mass and FE. Surprisingly, we found that the expression of 699 genes encoding the broiler mitoproteome is modestly–but significantly–biased towards the high FE group, suggesting a slightly elevated mitochondrial content. This is contrary to expectation based on the slow muscle isoform data and theoretical physiological capacity arguments. Reassuringly, the extreme 40 most DE genes can successfully cluster the 12 individuals into the appropriate FE treatment group. Functional groups contained in this DE gene list include metabolic proteins (including opposing patterns of CA3 and CA4), mitochondrial proteins (CKMT1A), oxidative status (SEPP1, HIG2A) and cholesterol homeostasis (APOA1, INSIG1). We applied a differential network method (Regulatory Impact Factors) whose aim is to use patterns of differential co-expression to detect regulatory molecules transcriptionally rewired between the groups. This analysis clearly points to alterations in progesterone signalling (via the receptor PGR) as the major driver. We show the progesterone receptor localises to the mitochondria in a quail muscle cell line. Conclusions Progesterone is sometimes used in the cattle industry in exogenous hormone mixes that lead to a ~20% increase in FE. Because the progesterone receptor can localise to avian mitochondria, our data continue to point to muscle mitochondrial metabolism as an important component of the phenotypic expression of variation in broiler FE. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0396-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Walter Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia
| | - Ashley J Waardenberg
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia.,Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kentu Lassiter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas J Hudson
- School of Agriculture and Food Science, University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
30
|
Transcriptomic Analysis Identifies Candidate Genes Related to Intramuscular Fat Deposition and Fatty Acid Composition in the Breast Muscle of Squabs (Columba). G3-GENES GENOMES GENETICS 2016; 6:2081-90. [PMID: 27175015 PMCID: PMC4938661 DOI: 10.1534/g3.116.029793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the fact that squab is consumed throughout the world because of its high nutritional value and appreciated sensory attributes, aspects related to its characterization, and in particular genetic issues, have rarely been studied. In this study, meat traits in terms of pH, water-holding capacity, intramuscular fat content, and fatty acid profile of the breast muscle of squabs from two meat pigeon breeds were determined. Breed-specific differences were detected in fat-related traits of intramuscular fat content and fatty acid composition. RNA-Sequencing was applied to compare the transcriptomes of muscle and liver tissues between squabs of two breeds to identify candidate genes associated with the differences in the capacity of fat deposition. A total of 27 differentially expressed genes assigned to pathways of lipid metabolism were identified, of which, six genes belonged to the peroxisome proliferator-activated receptor signaling pathway along with four other genes. Our results confirmed in part previous reports in livestock and provided also a number of genes which had not been related to fat deposition so far. These genes can serve as a basis for further investigations to screen markers closely associated with intramuscular fat content and fatty acid composition in squabs. The data from this study were deposited in the National Center for Biotechnology Information (NCBI)’s Sequence Read Archive under the accession numbers SRX1680021 and SRX1680022. This is the first transcriptome analysis of the muscle and liver tissue in Columba using next generation sequencing technology. Data provided here are of potential value to dissect functional genes influencing fat deposition in squabs.
Collapse
|
31
|
Cho JH, Jeong JY, Lee RH, Park MN, Kim SH, Park SM, Shin JC, Jeon YJ, Shim JH, Choi NJ, Seo KS, Cho YS, Kim MS, Ko S, Seo JM, Lee SY, Chae JI, Lee HJ. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1197-206. [PMID: 27165017 PMCID: PMC4932575 DOI: 10.5713/ajas.16.0051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/21/2016] [Accepted: 04/18/2016] [Indexed: 11/27/2022]
Abstract
Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Jin Young Jeong
- Animal Products Utilization Division, National Institute of Animal science, Jeonju 565-851, Korea
| | - Ra Ham Lee
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Mi Na Park
- Animal Products Utilization Division, National Institute of Animal science, Jeonju 565-851, Korea
| | - Seok-Ho Kim
- Aging Research Institute, Korea Research Institute of Bioscience & BioTechnology, Daejeon 34141, Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang Technopark, Pohang 37668, Korea
| | - Jae-Cheon Shin
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo 534-729, Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo 534-729, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 54896, Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu 704-701, Korea
| | - MinSeok S Kim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea
| | - Sungho Ko
- Department of Applied Bioscience, CHA University, Seongnam 463-836, Korea
| | - Jae-Min Seo
- Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science and Research Institute of Clinical Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Seung-Youp Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Hyun-Jeong Lee
- Animal Nutritional Physiology Team, National Institute of Animal Science, Jeonju 565-851, Korea
| |
Collapse
|
32
|
Bonnet M, Tournayre J, Cassar-Malek I. Integrated data mining of transcriptomic and proteomic datasets to predict the secretome of adipose tissue and muscle in ruminants. MOLECULAR BIOSYSTEMS 2016; 12:2722-34. [DOI: 10.1039/c6mb00224b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adipose tissue and muscle are endocrine organs releasing signalling and mediator proteins termed adipokines and myokines. The identification of the complete set of proteins secreted by adipose tissue and muscle is a challenge to understand the molecular cross-talk between these tissues and to reveal potential targets to control body or muscle composition and metabolism.
Collapse
Affiliation(s)
- M. Bonnet
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| | - J. Tournayre
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| | - I. Cassar-Malek
- INRA
- UMR1213 Herbivores
- F-63122 Saint-Genès-Champanelle
- France
- Clermont Université
| |
Collapse
|
33
|
Kang HJ, Trang NH, Baik M. Effects of Dietary Restriction on the Expression of Lipid Metabolism and Growth Hormone Signaling Genes in the Longissimus dorsi Muscle of Korean Cattle Steers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1187-93. [PMID: 26104528 PMCID: PMC4478488 DOI: 10.5713/ajas.15.0056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 01/01/2023]
Abstract
This study determined the effects of dietary restriction on growth and the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle (LM) of Korean cattle. Thirty-one Korean cattle steers (average age 10.5 months) were allocated to normal (N; n = 16) or dietary restriction (DR; n = 15) groups. The feeding trial consisted of two stages: for the 8-month growing period, the DR group was fed 80% of the food intake of the normal diet, and for the 6-month growth-finishing period, the DR group was fed a DR total mixed ration with 78.4% of the crude protein and 64% of the net energy for gain of the normal diet. The LM was biopsied 5 months (period 1 [P1] at 15.5 months of age) and 14 months (period 2 [P2] at 24.5 months of age) after the start of feeding. The mRNA levels were determined using real-time polymerase chain reaction. Body weight, daily feed intake, average daily gain, and feed efficiency were lower in the DR group compared with the normal group at both P1 and P2. At P1, the lipogenic fatty acid synthase (FASN) mRNA levels were lower (p<0.05) in the DR group compared with the normal group. The DR group tended (p = 0.06) to have higher of levels of growth hormone receptor (GHR) mRNA than the normal group. At P2, the DR group tended to have lower (p = 0.06) androgen receptor (AR) mRNA levels than the normal group. In conclusion, our results demonstrate that dietary restriction partially decreases the transcription of lipogenic FASN and growth hormone signaling AR genes, but increases transcription of the GHR gene. These changes in gene transcription might affect body fat accumulation and the growth of the animals.
Collapse
Affiliation(s)
- H J Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| | - N H Trang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| | - M Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| |
Collapse
|
34
|
Baik M, Nguyen TH, Jeong JY, Piao MY, Kang HJ. Effects of castration on expression of lipid metabolism genes in the liver of korean cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:127-34. [PMID: 25557684 PMCID: PMC4283181 DOI: 10.5713/ajas.14.0582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/25/2014] [Accepted: 08/31/2014] [Indexed: 11/27/2022]
Abstract
Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.
Collapse
Affiliation(s)
- Myunggi Baik
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| | - Trang Hoa Nguyen
- Department of Molecular Biotechnology, Chonnam National University, Gwangju 500-757, Korea
| | - Jin Young Jeong
- National Institute of Animal Science, RDA, Suwon 441-706, Korea
| | - Min Yu Piao
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| | - Hyeok Joong Kang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea ; Institute of Green Bio Science Technology, Pyeungchang 232-916, Korea
| |
Collapse
|
35
|
Cai Z, Zhang L, Jiang X, Sheng Y, Xu N. Differential miRNA expression profiles in the longissimus dorsi muscle between intact and castrated male pigs. Res Vet Sci 2014; 99:99-104. [PMID: 25591995 DOI: 10.1016/j.rvsc.2014.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 12/14/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are important modulators of skeletal muscle development in multiple mammalian species, but their role in skeletal muscle growth in castrated male pigs has not been well studied. The aim of the present study was to determine the role of miRNAs in longissimus dorsi muscle under castration. Our results showed that castration caused a significant decrease in serum testosterone levels as well as carcass lean mass, but led to an increase in carcass fat mass. Moreover, miRNA expression profiles in skeletal muscle were significantly altered by castration, and seven differentially expressed miRNAs were discovered. More importantly, functional analysis suggested that these differentially expressed miRNAs and their targets are involved in the regulation of skeletal muscle contractile function and fat metabolism. Taken together, these results demonstrate altered miRNA expression in skeletal muscle of castrated male pigs, and suggest a potential mechanism underlying the effects of castration on porcine skeletal muscle growth.
Collapse
Affiliation(s)
- Zhaowei Cai
- College of Animal Science, Zhejiang University, Hangzhou 310058, China; Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoling Jiang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yifei Sheng
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ningying Xu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
36
|
Jeong JY, Suresh S, Park MN, Jang M, Park S, Gobianand K, You S, Yeon SH, Lee HJ. Effects of capsaicin on adipogenic differentiation in bovine bone marrow mesenchymal stem cell. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1783-93. [PMID: 25358373 PMCID: PMC4213691 DOI: 10.5713/ajas.2014.14720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/22/2014] [Accepted: 09/29/2014] [Indexed: 01/23/2023]
Abstract
Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs) in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 μM) for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Sekar Suresh
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Mi Na Park
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Mi Jang
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Sungkwon Park
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Kuppannan Gobianand
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Seungkwon You
- The Laboratory of Cell Growth and Function Regulation, Division of Bioscience and Technology, College of Life and Environmental Sciences, Korea University, Seoul 136-701, Korea
| | - Sung-Heom Yeon
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| | - Hyun-Jeong Lee
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Suwon 441-706, Korea
| |
Collapse
|
37
|
Baik M, Jeong JY, Vu TTT, Piao MY, Kang HJ. Effects of castration on the adiposity and expression of lipid metabolism genes in various fat depots of Korean cattle. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|