Jerez-Timaure N, Sánchez-Hidalgo M, Pulido R, Mendoza J. Effect of Dietary Brown Seaweed (
Macrocystis pyrifera) Additive on Meat Quality and Nutrient Composition of Fattening Pigs.
Foods 2021;
10:foods10081720. [PMID:
34441498 PMCID:
PMC8393841 DOI:
10.3390/foods10081720]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary brown seaweed (Macrocystis pyrifera) additive (SWA) on meat quality and nutrient composition of commercial fattening pigs. The treatments were: Regular diet with 0% inclusion of SWA (CON); Regular diet with 2% SWA (2%-SWA); Regular diet with 4% SWA (4%-SWA). After slaughtering, five carcasses from each group were selected, and longissimus lumborum (LL) samples were taken for meat quality and chemical composition analysis. Meat quality traits (except redness intensity) were not affected (p > 0.05) by treatments. Samples from the 4%-SWA treatment showed the lowest a value than those from the 2%-SWA and CON treatments (p = 0.05). Meat samples from the 4%-SWA group contained 3.37 and 3.81 mg/100 g more of muscle cholesterol than CON and 2% SWA groups, respectively (p < 0.05). The SWA treatments affected (p ≤ 0.05) the content of ash, Mn, Fe, and Cu. The LL samples from 4%-SWA had the highest content of ash; however, they showed 0.13, 0.45, and 0.23 less mg/100 g of Mn, Fe, and Zn, respectively, compared to samples from CON (p ≤ 0.05). Fatty acids composition and macro minerals content (Na, Mg, and K) did not show variation due to the SWA treatments. Further studies are needed to understand the biological effects of these components on adipogenesis, cholesterol metabolism, and mineral deposition in muscle.
Collapse