Barnes TL, Cadaret CN, Beede KA, Schmidt TB, Petersen JL, Yates DT. Hypertrophic muscle growth and metabolic efficiency were impaired by chronic heat stress, improved by zilpaterol supplementation, and not affected by ractopamine supplementation in feedlot lambs1.
J Anim Sci 2019;
97:4101-4113. [PMID:
31410479 PMCID:
PMC6776279 DOI:
10.1093/jas/skz271]
[Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Feedlot performance is reduced by heat stress and improved by β adrenergic agonists (βAA). However, the physiological mechanisms underlying these outcomes are not well characterized, and anecdotal reports suggest that βAA may confound the effects of heat stress on wellbeing. Thus, we sought to determine how heat stress and βAA affect growth, metabolic efficiency, and health indicators in lambs on a feedlot diet. Wethers (38.6 ± 1.9 kg) were housed under thermoneutral (controls; n = 25) or heat stress (n = 24) conditions for 21 d. In a 2 × 3 factorial, their diets contained no supplement (unsupplemented), ractopamine (β1AA), or zilpaterol (β2AA). Blood was collected on days -3, 3, 9, and 21. On day 22, lambs were harvested and ex vivo skeletal muscle glucose oxidation was determined to gauge metabolic efficiency. Feet and organ tissue damage was assessed by veterinary pathologists. Heat stress reduced (P < 0.05) feed intake by 21%, final bodyweight (BW) by 2.6 kg, and flexor digitorum superficialis (FDS) muscle mass by 5%. β2AA increased (P < 0.05) FDS mass/BW by 9% and average muscle fiber area by 13% compared with unsupplemented lambs. Blood lymphocytes and monocytes were greater (P < 0.05) in heat-stressed lambs, consistent with systemic inflammation. Plasma insulin was 22% greater (P < 0.05) and glucose/insulin was 16% less (P < 0.05) in heat-stressed lambs than controls. Blood plasma urea nitrogen was increased (P < 0.05) by heat stress on day 3 but reduced (P < 0.05) on days 9 and 21. Plasma lipase and lactate dehydrogenase were reduced (P < 0.05) by heat stress. Glucose oxidation was 17% less (P < 0.05) in muscle from heat-stressed lambs compared with controls and 15% greater (P < 0.05) for β2AA-supplemented compared with unsupplemented lambs. Environment and supplement interacted (P < 0.05) for rectal temperature, which was increased (P < 0.05) by heat stress on all days but more so (P < 0.05) in β2AA-supplemented lambs on days 4, 9, and 16. Heat stress increased (P < 0.05) the frequency of hoof wall overgrowth, but βAA did not produce any pathologies. We conclude that reduced performance in heat-stressed lambs was mediated by reduced feed intake, muscle growth, and metabolic efficiency. β2AA increased muscle growth and improved metabolic efficiency by increasing muscle glucose oxidation, but no such effects were observed with ractopamine. Finally, βAA supplementation was not detrimental to health indicators in this study, nor did it worsen the effects of heat stress.
Collapse