1
|
Leyva-Medina KH, Dávila-Ramos H, Portillo-Loera JJ, Acuña-Meléndez OS, Cervantes-Noriega A, Sánchez-Pérez JN, Molina-Gámez G, Rodríguez-Carpena JG, Mejía-Delgadillo MA, Robles-Estrada JC. Effects of Zilpaterol Hydrochloride with a Combination of Vitamin D 3 on Feedlot Lambs: Growth Performance, Dietary Energetics, Carcass Traits, and Meat Quality. Animals (Basel) 2024; 14:1303. [PMID: 38731307 PMCID: PMC11083134 DOI: 10.3390/ani14091303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
This study evaluated the impact of supplementing ZH in combination with D3 on the growth performance, energy efficiency, carcass traits, and meat quality of feedlot lambs. Thirty-two Dorper × Katahdin cross lambs (37.3 ± 5.72 kg) were utilized in a 29 d experiment in a completely randomized block design with a 2 × 2 factorial structure consisting of two levels of ZH for 26 d (0 and 0.20 mg/kg PV-1) and two levels of D3 for 7 d (0 and 1.5 × 106 IU/d-1). ZH improved (p ≤ 0.05) the average daily gain (ADG) and feed efficiency by 9.9% and 17.8%, respectively, as well as hot carcass weight (HCW) and dressing carcass by 4.3% and 2.6%, respectively. (p ≤ 0.03). However, ZH increased (p < 0.01) muscle pH and Warner-Bratzler shear force (WBSF) (2.5 and 23.0%, respectively). D3 supplementation negatively affected (p ≤ 0.02) dry matter intake (DMI) (last 7 d) and ADG by 15.7% and 18.1%. On the other hand, D3 improved the pH of the longissimus thoracis muscle by 1.7% (p = 0.03) without affecting WBSF. When D3 was supplemented in combination with ZH, it was observed that meat quality was improved by reducing muscle pH compared to lambs treated only with ZH. However, D3 did not improve the meat tenderness negatively affected by ZH supplementation.
Collapse
Affiliation(s)
- Karla H. Leyva-Medina
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Horacio Dávila-Ramos
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Jesús J. Portillo-Loera
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Omar S. Acuña-Meléndez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Adriana Cervantes-Noriega
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Jaime N. Sánchez-Pérez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Gamaliel Molina-Gámez
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| | - Javier G. Rodríguez-Carpena
- Academic Unit of Veterinary Medicine and Zootechnics, Autonomous University of Nayarit, Compostela 63700, Nayarit, Mexico;
| | | | - Juan C. Robles-Estrada
- Faculty of Veterinary Medicine and Zootechnics, Autonomous University of Sinaloa, Culiacan 80246, Sinaloa, Mexico; (K.H.L.-M.); (H.D.-R.); (J.J.P.-L.); (O.S.A.-M.); (A.C.-N.); (J.N.S.-P.); (G.M.-G.)
| |
Collapse
|
2
|
Nguyen DV, Nguyen OC, Malau-Aduli AE. Main regulatory factors of marbling level in beef cattle. Vet Anim Sci 2021; 14:100219. [PMID: 34877434 PMCID: PMC8633366 DOI: 10.1016/j.vas.2021.100219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
The content of intramuscular fat (IMF), that determines marbling levels is considered as one of the vital factors influencing beef sensory quality including tenderness, juiciness, flavour and colour. The IMF formation in cattle commences around six months after conception, and continuously grows throughout the life of the animal. The accumulation of marbling is remarkably affected by genetic, sexual, nutritional and management factors. In this review, the adipogenesis and lipogenesis process regulated by various factors and genes during fetal and growing stages is briefly presented. We also discuss the findings of recent studies on the effects of breed, gene, heritability and gender on the marbling accumulation. Various research reported that feeding during pregnancy, concentrate to roughage ratios and the supplementation or restriction of vitamin A, C, and D are crucial nutritional factors affecting the formation and development of IMF. Castration and early weaning combined with high energy feeding are effective management strategies for improving the accumulation of IMF. Furthermore, age and weight at slaughter are also reviewed because they have significant effects on marbling levels. The combination of several factors could positively affect the improvement of the IMF deposition. Therefore, advanced strategies that simultaneously apply genetic, sexual, nutritional and management factors to achieve desired IMF content without detrimental impacts on feed efficiency in high-marbling beef production are essential.
Collapse
Affiliation(s)
- Don V. Nguyen
- National Institute of Animal Science, Bac Tu Liem, Hanoi 29909, Vietnam
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Oanh C. Nguyen
- Faculty of Animal Science, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Aduli E.O. Malau-Aduli
- Veterinary Sciences Discipline, College of Public Health, Medical and Veterinary Sciences, Division of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|