1
|
Yakan A, Özkan H, Kaya U, Keçeli HH, Karaaslan I, Dalkiran S, Akçay A, Ünal N, Sariözkan S, Akyüz B, Arslan K, Çamdeviren B, Güngör G, Küçükoflaz M, Özbeyaz C. The effects of the feeding duration of propylene glycol on major meat quality parameters and substantial proteins in the muscle of Akkaraman lambs. Meat Sci 2024; 217:109615. [PMID: 39084122 DOI: 10.1016/j.meatsci.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
In this study, the effects of propylene glycol (PG) on meat quality and molecular pathways related to energy metabolism in longissimus lumborum muscle on lambs were evaluated. Seventy-two lambs were divided into three groups consisting of 60th, 90th, and 120th of slaughter days. The dosage of the PG and slaughter days were the variables used in the study. Eight animals were slaughtered from each group on each day. The meat quality parameters (e.g., pH, protein, fatty acid profile) and IGF-1, IGFBP4, and DGAT1 (i.e., mRNA and protein levels) were evaluated. The pH 45 min post-slaughter was higher in PG groups on 120th day. On the 4th day after slaughter, the b value was the lowest in the PG3, while 7th day after slaughter it was highest in Con and PG3 on 90th day. The total n3 and n6 were lowest and the NV was highest on 120th day. The IGFBP4 was upregulated in the PG groups on all of the slaughter days. The DGAT1 was upregulated in the PG3 on the 90th day. The IGF-1, DGAT1, IGFBP4 protein levels were found to have increased in the PG3 on 90th day. The IGFBP4 was found to have decreased in the PG3 on 120th day. According to the results of the study, the oral administration of the PG at the 3 mL/kg live weight0.75 for at least 120 days may have positive effects on meat quality in lambs through the IGF-1, DGAT1, and IGFBP4 genes and the proteins encoded by these genes.
Collapse
Affiliation(s)
- Akın Yakan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, 31060, Hatay, Türkiye.
| | - Hüseyin Özkan
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, 31060, Hatay, Türkiye
| | - Ufuk Kaya
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Biostatistics, 31060, Hatay, Türkiye
| | - Hasan Hüseyin Keçeli
- Hatay Mustafa Kemal University, Faculty of Veterinary Medicine, Department of Genetics, 31060, Hatay, Türkiye
| | - Irem Karaaslan
- Hatay Mustafa Kemal University, Technology and Research & Development Center (MARGEM), 31060, Hatay, Türkiye
| | - Sevda Dalkiran
- Hatay Mustafa Kemal University, Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, 31060, Hatay, Türkiye
| | - Aytaç Akçay
- Ankara University, Faculty of Veterinary Medicine, Department of Biostatistics, 06070 Ankara, Türkiye
| | - Necmettin Ünal
- Ankara University, Faculty of Veterinary Medicine, Department of Animal Science, 06070 Ankara, Türkiye
| | - Savaş Sariözkan
- Erciyes University, Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, 38039 Kayseri, Türkiye
| | - Bilal Akyüz
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, 38039 Kayseri, Türkiye
| | - Korhan Arslan
- Erciyes University, Faculty of Veterinary Medicine, Department of Genetics, 38039 Kayseri, Türkiye
| | - Baran Çamdeviren
- Hatay Mustafa Kemal University, Institute of Health Sciences, Department of Molecular Biochemistry and Genetics, 31060, Hatay, Türkiye
| | - Güven Güngör
- Bingöl University, Faculty of Veterinary Medicine, Department of Biostatistics, 12000 Bingöl, Türkiye
| | - Mehmet Küçükoflaz
- Kafkas University, Faculty of Veterinary Medicine, Department of Animal Health Economics and Management, 36300 Kars, Türkiye
| | - Ceyhan Özbeyaz
- Ankara University, Faculty of Veterinary Medicine, Department of Animal Science, 06070 Ankara, Türkiye
| |
Collapse
|
2
|
Jaborek JR, Fluharty FL, Lee K, Zerby HN, Relling AE. Lipid metabolism mRNA expression and cellularity of intramuscular adipocytes within the Longissimus muscle of Angus- and Wagyu-sired cattle fed for a similar days on feed or body weight endpoint. J Anim Sci 2023; 101:skac371. [PMID: 36753534 PMCID: PMC9907753 DOI: 10.1093/jas/skac371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/03/2022] [Indexed: 02/09/2023] Open
Abstract
This study investigates intramuscular (IM) adipocyte development in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (D) endpoint or similar body weight (B) endpoint by measuring IM adipocyte cell area and lipid metabolism mRNA expression. Angus-sired steers (AN, n = 6) were compared with steers from two different Wagyu sires (WA), selected for either growth (G) or marbling (M), to be compared at a similar days on feed (DOF; 258 ± 26.7 d; WA-GD, n = 5 and WA-MD, n = 5) in Exp. 1 or body weight (BW; 613 ± 18.0 kg; WA-GB, n = 4 and WA-MB, n = 5) in Exp. 2, respectively. In Exp. 1, WA-MD steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GD steers. In Exp. 2, WA-MB steers had a greater (P ≤ 0.01) percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age (P ≤ 0.01) and BW increased (P ≤ 0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar DOF and BW (P ≤ 0.02; treatment × biopsy interaction). Peroxisome proliferator activated receptor gamma was upregulated (PPARg) at a lesser BW for WA-MB steers (P = 0.09; treatment × biopsy interaction), while WA-MD steers had a greater (P ≤ 0.04) overall mean PPARg mRNA expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated mRNA expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early mRNA expression of fatty acid transporters (fatty acid transport protein 1; P < 0.02; treatment × biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. Cattle with a greater marbling propensity appear to upregulate adipogenesis at a younger chronological and physiological maturity through PPARd, PPARg, and possibly adipogenic regulating compounds, lysophosphatidic acid, and diacylglycerol. These genes and compounds could be used as potential markers for marbling propensity of cattle in the future.
Collapse
Affiliation(s)
- J R Jaborek
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
- Michigan State University Extension - Sanilac County, Sandusky, MI 48471, USA
| | - F L Fluharty
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | | | - A E Relling
- Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA
| |
Collapse
|
3
|
Analysis of stability of reference genes for qPCR in bovine preadipocytes during proliferation and differentiation in vitro. Gene X 2022; 830:146502. [PMID: 35483498 DOI: 10.1016/j.gene.2022.146502] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 03/08/2022] [Accepted: 04/14/2022] [Indexed: 11/22/2022] Open
Abstract
The stability of internal reference genes is crucial to the reliability of gene expression results using real-time fluorescence quantitative PCR (qRT-PCR). Inappropriate reference genes may lead to inaccurate results or even wrong conclusions. This study aims to identify stable reference genes for analyzing the expression of proliferation-related and differentiation-inducing genes in bovine primary preadipocytes (BPPs) in vitro. In this study, the stability of 16 candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K, RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) for qRT-PCR at proliferation and differentiation stages of BPPs was investigated by three different algorithms (geNorm, NormFinder and BestKeeper). The expression of two marker genes, PCNA and LPL, was used to determine the validity of the candidate reference genes (RGs) at the proliferation and differentiation stages, respectively. The results showed that GAPDH and RPS15A were the most stable RGs in the proliferation of bovine primary preadipocyte, while PPIA was the least stable internal reference gene. RPLP0 and EIF3K were the most stable RGs in the differentiation induction of bovine primary preadipocyte, while GAPDH was the least stable internal reference gene. This study of RGs laid the foundation for subsequent research into the mechanism of proliferation and differentiation of BPPs in vitro using qRT-PCR.
Collapse
|
4
|
Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells. Sci Rep 2022; 12:5653. [PMID: 35383222 PMCID: PMC8983775 DOI: 10.1038/s41598-022-09476-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
The accuracy of sixteen commonly used internal reference genes was assessed in skeletal muscle-derived satellite cells of Qinchuan cattle at different stages of proliferation and induction of differentiation to determine the most suitable ones. Quantitative real-time PCR and three commonly used algorithmic programs, GeNorm, NormFinder and BestKeeper, were used to evaluate the stability of expression of the candidate internal reference genes (GAPDH, ACTB, PPIA, LRP10, HPRT1, YWHAZ, B2M, TBP, EIF3K , RPS9, UXT, 18S rRNA, RPLP0, MARVELD, EMD and RPS15A) in skeletal muscle-derived satellite cells at 0, 12, 24, 36 and 48 h of growth and after differentiation for 0, 2, 4, 6 and 8 days. The expression of two satellite cell marker genes, CCNA2 and MYF5, was used for validation analysis. The results of the software analyses showed that GAPDH and RPS15A were the most stable reference gene combinations during in vitro proliferation of bovine skeletal muscle-derived satellite cells, RPS15A and RPS9 were the most stable reference gene combinations during in vitro induction of differentiation of the cells, and PPIA was the least stable reference gene during proliferation and differentiation and was not recommended. This study lays the foundation for the selection of reference genes for qRT-PCR during the proliferation and induction of differentiation of bovine skeletal muscle-derived satellite cells.
Collapse
|
5
|
Manca E, Cesarani A, Falchi L, Atzori AS, Gaspa G, Rossoni A, Macciotta NPP, Dimauro C. Genome-wide association study for residual concentrate intake using different approaches in Italian Brown Swiss. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1963864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- E. Manca
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - L. Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. S. Atzori
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - G. Gaspa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Grugliasco, Italy
| | - A. Rossoni
- Associazione Nazionale degli Allevatori di Razza Bruna (ANARB), Verona, Italy
| | | | - C. Dimauro
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| |
Collapse
|
6
|
Gene Expression and Carcass Traits Are Different between Different Quality Grade Groups in Red-Faced Hereford Steers. Animals (Basel) 2021; 11:ani11071910. [PMID: 34198984 PMCID: PMC8300355 DOI: 10.3390/ani11071910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Producing a consistent and positive experience for beef consumers is challenging. The gene expression in muscle at harvest may provide insight into better prediction of United States Department of Agriculture (USDA) quality grade. In this pilot study muscle samples were collected at harvest on sixteen steers with a similar background and identical management. Muscle transcripts were sequenced to determine gene expression. Transcripts related to the extracellular matrix, stem cell differentiation, and focal cell adhesions were differentially expressed in muscle tissue from carcasses with differing USDA quality grades. This confirmed the application of this technique to provide insight into muscle development and fat deposition necessary for better prediction and selection to improve consistency and consumer experience. Abstract Fat deposition is important to carcass value and some palatability characteristics. Carcasses with higher USDA quality grades produce more value for producers and processors in the US system and are more likely to have greater eating satisfaction. Using genomics to identify genes impacting marbling deposition provides insight into muscle biochemistry that may lead to ways to better predict fat deposition, especially marbling and thus quality grade. Hereford steers (16) were managed the same from birth through harvest after 270 days on feed. Samples were obtained for tenderness and transcriptome profiling. As expected, steaks from Choice carcasses had a lower shear force value than steaks from Select carcasses; however, steaks from Standard carcasses were not different from steaks from Choice carcasses. A significant number of differentially expressed (DE) genes was observed in the longissimus lumborum between Choice and Standard carcass RNA pools (1257 genes, p < 0.05), but not many DE genes were observed between Choice and Select RNA pools. Exploratory analysis of global muscle tissue transcriptome from Standard and Choice carcasses provided insight into muscle biochemistry, specifically the upregulation of extracellular matrix development and focal adhesion pathways and the downregulation of RNA processing and metabolism in Choice versus Standard. Additional research is needed to explore the function and timing of gene expression changes.
Collapse
|
7
|
Expression of key myogenic, fibrogenic and adipogenic genes in Longissimus thoracis and Masseter muscles in cattle. Animal 2020; 14:1510-1519. [DOI: 10.1017/s1751731120000051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
8
|
Martínez del Pino L, Arana A, Alfonso L, Mendizábal JA, Soret B. Adiposity and adipogenic gene expression in four different muscles in beef cattle. PLoS One 2017; 12:e0179604. [PMID: 28665940 PMCID: PMC5493301 DOI: 10.1371/journal.pone.0179604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Anatomical site and divergent functionalities of muscles can be related to differences in IMF content, metabolism and adipogenic gene expression. Then, potential differences in different muscles in beef cattle were studied. As a second objective, the main sources of experimental variability associated to RT-qPCR results were analyzed following a nested design in order to implement appropriate experimental designs minimizing gene expression variability. To perform the study Longissimus thoracis (LT), Semitendinosus (SM), Masseter (MS), Sternomandibularis (ST) and subcutaneous adipose tissue (SAT) samples of Pirenaica young bulls (n = 4) were collected for IMF, collagen and protein quantification, analysis of adipocyte size distribution and gene expression (PPARG, CEBPA, FAPB4 and WNT10B). A greater IMF content was observed in MS and SM muscles, which had a bimodal adipocyte size distribution while it was unimodal in the muscles LT and ST. This suggest that the different IMF accretion in the muscles studied might be related to different rates of hyperplasia and hypertrophy and that IMF might develop later in LT and ST muscles. The former differences were not mirrored by the expression of the genes analyzed, which might be related to the different contribution of mature and non-mature adipocytes to the total gene expression. When comparing IMF and SAT gene expression, late and early developing tissues respectively, expression of PPARG, CEBPA and FABP4 was higher in the SAT, in agreement with bigger cell size and numbers. The variability study indicates that the analytical factors that add higher variability to the gene expression are the sampling and RT and therefore, it would be appropriate to include those replicates in the design of future experiments. Based on the results, the use of MS and SM muscles could allow less expensive experimental designs and bigger sample size that could permit the detection of lower relevant differences in gene expression.
Collapse
Affiliation(s)
- Lara Martínez del Pino
- Escuela Superior de Ingenieros Agrónomos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - Ana Arana
- Escuela Superior de Ingenieros Agrónomos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - Leopoldo Alfonso
- Escuela Superior de Ingenieros Agrónomos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - José Antonio Mendizábal
- Escuela Superior de Ingenieros Agrónomos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
| | - Beatriz Soret
- Escuela Superior de Ingenieros Agrónomos, Departamento de Producción Agraria, Universidad Pública de Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
9
|
Jeong JY, Ibrahim M, Kim MJ, So K, Jeong YD, Park S, Kim M, Lee HJ. Comparisons of extracellular matrix-related gene expression levels in different adipose tissues from Korean cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Growth performance, body composition, carcass traits and meat quality of young Nellore bulls fed freshly cut or ensiled sugar cane. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|