1
|
Miorin R, Batista L, Nascimento F, Costa e Silva L, Koontz A, Pettigrew J, Resende F, Siqueira G. Effect of supplementation strategies and the use of exogenous xylanase enzyme on ruminal fermentation, digestibility, animal performance, and carcass characteristics of Nellore bulls grazing during dry season. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
2
|
Caetano M, Goulart RS, Silva SL, Leme PR, Pflanzer SB, dos Santos ACR, Lanna DPD. Effects of the Duration of Zilpaterol Hydrochloride Supplementation and Days on Feed on Performance, Carcass Traits and Saleable Meat Yield of Nellore Bulls. Animals (Basel) 2021; 11:ani11082450. [PMID: 34438906 PMCID: PMC8388753 DOI: 10.3390/ani11082450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Zilpaterol hydrochloride (ZH) is a β-adrenergic agonist (βAA) to be feed to feedlot cattle at a rate of 8.3 mg/kg during the final 20 to 40 d of the finishing period followed by a minimum 3 d withdrawal period. This compound has the potential to increase animal performance, improve carcass weight and meat yield. Although significant information regarding the effects of duration of ZH supplementation and days on the feed of Bos taurus cattle has been provided, there is a lack of information relative to its effects on Bos indicus breeds such as Nellore cattle. The current study aimed to evaluate the effects of the duration of ZH supplementation and DOF on performance, carcass characteristics, and saleable meat yield of Nellore bulls. The HCW and total saleable meat yield linearly increased with the duration of ZH supplementation as well as when the length of the feedlot period increased. We recommend supplementing ZH for Nellore bulls at least for 20 days, independently of days on feed, to improve hot carcass weight, hindquarter, and saleable meat yields of Nellore bulls. Abstract This study evaluated the effects of the duration of ZH supplementation and days on feed (DOF) on performance, carcass characteristics, and saleable meat yield of Nellore young bulls. The fixed effects included the duration (0, 20, 30, or 40 d before slaughter plus a 3 d ZH withdrawal period—8.33 mg of ZH/kg of DM) and DOF (90 and 117 d). Feed efficiency (G:F) linearly increased when the duration of ZH supplementation increased (p < 0.01). Nellore bulls fed ZH had greater HCW (p < 0.01), dressing percentage (p < 0.01) and Longissimus muscle area (LMA) (p < 0.01), but less 12th-rib fat (p = 0.04) than the control group. The hot carcass weight (HCW) (p < 0.01), and dressing percentage increased linearly (p < 0.01) with the increase of duration of ZH supplementation. The HCW, ossification, and 12th-rib fat increased with DOF (p < 0.01). The ZH supplemented group had most of the individual cuts of hindquarters and total saleable meat increased compared with the control. Zilpaterol hydrochloride was effective in improving hot carcass weight, hindquarter, and saleable meat yields of Nellore bulls when fed for at least 20 d before slaughter, independently of days on feed.
Collapse
Affiliation(s)
- Mariana Caetano
- Davies Livestock Research Centre, Department of Animal and Veterinary Bioscience, School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Rodrigo S. Goulart
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.S.); (P.R.L.)
- Correspondence:
| | - Saulo L. Silva
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.S.); (P.R.L.)
| | - Paulo R. Leme
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (S.L.S.); (P.R.L.)
| | - Sérgio B. Pflanzer
- Department of Food Technology, Faculty of Food Engineering, The University of Campinas, Campinas 13083-862, SP, Brazil;
| | - Antonio C. R. dos Santos
- Department of Animal Science, College of Agriculture, University of São Paulo, Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil; (A.C.R.d.S.); (D.P.D.L.)
| | - Dante P. D. Lanna
- Department of Animal Science, College of Agriculture, University of São Paulo, Luiz de Queiroz, Piracicaba 13418-900, SP, Brazil; (A.C.R.d.S.); (D.P.D.L.)
| |
Collapse
|
3
|
Nascimento FA, Silva NC, Prados LF, Pacheco RDL, Johnson BJ, Cappellozza BI, Resende FD, Siqueira GR. Calcium salts of fatty acids with varying fatty acid profiles in diets of feedlot-finished Bos indicus bulls: impacts on intake, digestibility, performance, and carcass and meat characteristics. J Anim Sci 2021; 98:6009024. [PMID: 33247910 DOI: 10.1093/jas/skaa382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
We hypothesized that the inclusion of calcium salts of fatty acid (CSFA) into the diets and the fatty acid (FA) profile of the supplements would impact performance and meat characteristics of Bos indicus bulls. Hence, the objective was to evaluate the effects of CSFA profiles on intake, body weight (BW), carcass, and meat characteristics of feedlot-finished B indicus bulls. Fifty-three Nellore bulls [initial BW 315 ± 5.9 kg and 20 ± 2 mo] were used. At the beginning, 6 bulls were randomly chosen and slaughtered for determination of their BW composition, and the remaining 47 bulls were evaluated during a 140-d experimental period. The bulls were placed in individual pens, blocked according to initial BW and randomly allocated to 1 of the 3 following treatments: (1) control diet containing sugarcane bagasse, ground corn, citrus pulp, peanut meal, and mineral-vitamin mix (CON), (2) CON with the addition of 3.3% of CSFA from soybean oil (CSO), or (3) CON with the addition of a mixture of 3.3% of CSFA from palm, soybean, and cottonseed oils (CPSCO). Diets were offered ad libitum and formulated to be isonitrogenous. Bulls supplemented with CSFA had a greater (P < 0.01) final BW, dry matter intake, average daily gain (ADG), feed efficiency (FE), and FA intake vs. CON. Among carcass parameters, CSFA-supplemented bulls had greater (P < 0.01) carcass ether extract concentration vs. CON bulls. When the CSFA profile was evaluated (CSO vs. CPSCO), CPSCO bulls had a better (P ≤ 0.03) FE, carcass ADG, and hot carcass weight (HCW) vs. CSO bulls. The FA intakes differed among CSFA treatments, as the total saturated, palmitic, and oleic FA intakes were greater for CPSCO (P < 0.01), whereas lower intakes of total unsaturated and polyunsaturated FA (P < 0.01) were observed for CPSCO vs. CSO. Samples from the Longissimus muscle contained greater palmitoleic (P = 0.01) and reduced linoleic (P = 0.02) FA concentrations in CSFA-supplemented bulls vs. CON bulls. In agreement with the FA intakes, CPSCO-supplemented bulls had a greater (P ≤ 0.05) unsaturated FA concentration vs. CSO in Longissimus muscle. In summary, CSFA supplementation improved the performance of finishing B. indicus bulls vs. CON. Moreover, the inclusion of CSFA from palm, soybean, and cottonseed oil benefited the FE, carcass ADG, and HCW compared with the inclusion of CSFA from soybean oil, demonstrating the potential of specific FA for improving the performance and meat quality of B. indicus bulls.
Collapse
Affiliation(s)
- Felipe A Nascimento
- Animal Science Department, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, SP, Brazil
| | - Naiara C Silva
- Animal Science Department, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, SP, Brazil
| | - Laura F Prados
- Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina, SP, Brazil
| | - Rodrigo D L Pacheco
- Empresa Mato-Grossense de Pesquisa, Assistência e Extensão Rural (EMPAER), Varzea Grande, MT, Brazil
| | | | | | - Flávio D Resende
- Animal Science Department, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, SP, Brazil.,Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina, SP, Brazil
| | - Gustavo R Siqueira
- Animal Science Department, Universidade Estadual Paulista (UNESP/FCAV), Jaboticabal, SP, Brazil.,Agência Paulista de Tecnologia dos Agronegócios (APTA), Colina, SP, Brazil
| |
Collapse
|
4
|
Yates DT, Camacho LE, Kelly AC, Steyn LV, Davis MA, Antolic AT, Anderson MJ, Goyal R, Allen RE, Papas KK, Hay WW, Limesand SW. Postnatal β2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle. J Physiol 2019; 597:5835-5858. [PMID: 31665811 PMCID: PMC6911010 DOI: 10.1113/jp278726] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022] Open
Abstract
Key points Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole‐body glucose clearance is normal, 1‐month‐old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose‐stimulated insulin secretion in IUGR lambs is due to lower intra‐islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) β2 desensitization by administering oral ADRβ modifiers for the first month after birth to activate ADRβ2 and antagonize ADRβ1/3. In IUGR lambs ADRβ2 activation increased whole‐body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose‐stimulated insulin secretion and insulin‐stimulated glucose oxidation, providing new insights into potential mechanisms for this risk.
Abstract Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated β adrenergic receptor (ADRβ) desensitization. Our objectives were to measure insulin‐sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRβ2 agonist and ADRβ1/β3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose‐stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR‐AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole‐body GUR were not different from controls. Of importance, ADRβ2 stimulation with β1/β3 inhibition increases both insulin sensitivity and whole‐body glucose utilization in IUGR lambs. In IUGR and IUGR‐AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR‐AR skeletal muscle than in controls but GLUT1 was greater in IUGR‐AR. ADRβ2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR‐AR lambs heart rates were greater, which was independent of cardiac ADRβ1 activation. We conclude that targeted ADRβ2 stimulation improved whole‐body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch‐up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes. Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity. Although whole‐body glucose clearance is normal, 1‐month‐old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation. Impaired glucose‐stimulated insulin secretion in IUGR lambs is due to lower intra‐islet insulin availability and not from glucose sensing. We investigated adrenergic receptor (ADR) β2 desensitization by administering oral ADRβ modifiers for the first month after birth to activate ADRβ2 and antagonize ADRβ1/3. In IUGR lambs ADRβ2 activation increased whole‐body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies. IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose‐stimulated insulin secretion and insulin‐stimulated glucose oxidation, providing new insights into potential mechanisms for this risk.
Collapse
Affiliation(s)
- Dustin T Yates
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Leah V Steyn
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Andrew T Antolic
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ravi Goyal
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Ronald E Allen
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Klearchos K Papas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - William W Hay
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Costa C, Brichi A, Millen D, Goulart R, Pereira I, Estevam D, Perdigão A, Martins C, Arrigoni M. Feedlot performance, carcass characteristics and meat quality of Nellore bulls and steers fed Zilpaterol hydrochloride. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Van Bibber-Krueger CL, Miller KA, Amachawadi RG, Scott HM, Gonzalez JM, Drouillard JS. Interaction between supplemental zinc oxide and zilpaterol hydrochloride on growth performance, carcass traits, and blood metabolites in feedlot steers. J Anim Sci 2018; 95:5573-5583. [PMID: 29293781 DOI: 10.2527/jas2017.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactive effects of supplemental Zn and zilpaterol hydrochloride (ZH) were evaluated in feedlot steers ( = 40; 652 kg ± 14 initial BW) to determine their impact on feedlot performance, blood constituents, and carcass traits. The study was conducted as a randomized complete block design with a 2 × 2 factorial treatment arrangement. Steers were blocked by BW and randomly assigned to treatments. Factors consisted of supplemental Zn (60 or 300 mg/kg diet DM) and ZH (0 or 8.33 mg/kg) in the diets. For diets supplemented with 300 mg Zn/kg DM, 60 mg Zn/kg was supplemented as zinc sulfate and 240 mg Zn/kg was supplemented as zinc oxide, and the diet was fed for 24 d. Zilpaterol hydrochloride was fed for 21 d followed by a 3-d withdrawal. Cattle were housed in partially covered individual feeding pens equipped with automatic waterers and fence-line feed bunks and were fed once daily for ad libitum intake. Plasma samples were collected on d 0 and 21 to assess changes in Zn, plasma urea nitrogen (PUN), glucose, and lactate concentrations, and serum samples were collected on d 21 to assess IGF-1 concentration. On d 25, cattle were weighed and transported 450 km to a commercial abattoir for harvest; HCW and incidence of liver abscesses were recorded. Carcass data were collected after 36 h of refrigeration. Data were analyzed as a mixed model with Zn, ZH, and Zn × ZH as fixed effects; block as a random effect; and steer as the experimental unit. No interaction or effects of Zn or ZH were observed for IGF-1 concentration, plasma glucose, or lactate concentrations ( ≥ 0.25). No interaction between Zn and ZH was observed for PUN concentration, but PUN decreased with ZH ( < 0.01). There were no effects of ZH or Zn on ADG, DMI, final BW, feed efficiency, HCW, back fat, KPH, quality grade, or incidence of liver abscesses ( > 0.05). Zinc supplementation tended ( = 0.08) to improve the proportion of carcasses grading USDA Choice. Feeding ZH decreased yield grade ( = 0.05) and tended to increase LM area ( = 0.07). In conclusion, increasing dietary concentrations of Zn does not impact response to ZH, but feeding ZH altered circulating concentrations of PUN.
Collapse
|
7
|
Effects of immunocastration and a β-adrenergic agonist on retail cuts of feedlot finished Nellore cattle. Animal 2018; 12:1690-1695. [DOI: 10.1017/s1751731117003317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Cônsolo NRB, Ferrari VB, Mesquita LG, Goulart RS, Silva LFPE. Zilpaterol hydrochloride improves beef yield, changes palatability traits, and increases calpain-calpastatin gene expression in Nellore heifers. Meat Sci 2016; 121:375-381. [DOI: 10.1016/j.meatsci.2016.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/29/2016] [Accepted: 07/09/2016] [Indexed: 12/18/2022]
|