1
|
De Souza TPP, Cantão LXS, Rodrigues MQRB, Gonçalves DB, Nagem RAP, Rocha REO, Godoi RR, Lima WJN, Galdino AS, Minardi RCDM, Lima LHFD. Glycosylation and charge distribution orchestrates the conformational ensembles of a biotechnologically promissory phytase in different pHs - a computational study. J Biomol Struct Dyn 2024; 42:5030-5041. [PMID: 37325852 DOI: 10.1080/07391102.2023.2223685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Phytases [myo-inositol(1,2,3,4,5,6) hexakisphosphate phosphohydrolases] are phytate-specific phosphatases not present in monogastric animals. Nevertheless, they are an essential supplement to feeding such animals and for human special diets. It is crucial, hence, the biotechnological use of phytases with intrinsic stability and activity at the acid pHs from gastric environments. Here we use Metadynamics (METADY) simulations to probe the conformational space of the Aspergillus nidulans phytase and the differential effects of pH and glycosylation in this same space. The results suggest that strategic combinations of pH and glycosylation affect the stability of native-like conformations and alternate these structures from a metastable to a stable profile. Furthermore, the protein segments previously reported as more thermosensitive in phytases from this family present a pivotal role in the conformational changes at different conditions, especially H2, H5-7, L8, L10, L12, and L17. Also, the glycosylations and the pH-dependent charge balance modulate the mobility and interactions at these same regions, with consequences for the surface solvation and active site exposition. Finally, although the glycosylations have stabilized the native structure and improved the substrate docking at all the studied pHs, the data suggest a higher phytate receptivity at catalytic poses for the unglycosylated structure at pH 6.5 and the glycosylated one at pH 4.5. This behavior agrees with the exact change in optimum pH reported for this enzyme, expressed on low or high glycosylating systems. We hope the results and insights presented here will be helpful in future approaches for rational engineering of technologically promising phytases and intelligent planning of their heterologous expression systems and conditions for use.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thaís P P De Souza
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Letícia Xavier Silva Cantão
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Bonoto Gonçalves
- Department of Biosystems Engineering, Universidade Federal de São João Del-Rei, São João Del-Rei, Minas Gerais, Brazil
| | - Ronaldo Alves Pinto Nagem
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Eduardo Oliveira Rocha
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| | - Renato Ramos Godoi
- Institute of Biological Sciences Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - William James Nogueira Lima
- Institute of Agricultural Sciences, Universidade Federal de Minas Gerais, Campus Regional de Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Raquel Cardoso de Melo Minardi
- Laboratory of Bioinformatics and Systems (LBS), Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Henrique França de Lima
- Laboratory Of Molecular Modeling and Bioinformatics, Department of Exacts and Biological Sciences (DECEB), Universidade Federal de São João Del-Rei, Sete Lagoas, Minas Gerais, Brazil
| |
Collapse
|
2
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
3
|
Li Z, Zhang B, Zhu W, Lin Y, Chen J, Zhu F, Guo Y. Effects of nonantibiotic growth promoter combinations on growth performance, nutrient utilization, digestive enzymes, intestinal morphology, and cecal microflora of broilers. PLoS One 2023; 18:e0279950. [PMID: 36996144 PMCID: PMC10062635 DOI: 10.1371/journal.pone.0279950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
Given the ban on antibiotic growth promoters, the effects of nonantibiotic alternative growth promoter combinations (NAGPCs) on the growth performance, nutrient utilization, digestive enzyme activity, intestinal morphology, and cecal microflora of broilers were evaluated. All birds were fed pellets of two basal diets-starter (0-21 d) and grower (22-42 d)-with either enramycin (ENR) or NAGPC supplemented. 1) control + ENR; 2) control diet (CON, basal diet); 3) control + mannose oligosaccharide (MOS) + mannanase (MAN) + sodium butyrate (SB) (MMS); 4) control + MOS + MAN + Bacillus subtilis (BS) (MMB); 5) control + MOS + fruit oligosaccharide (FOS) + SB (MFS); 6) control + FOS + BS (MFB); 7) control + MOS + FOS + MAN (MFM); 8) control + MOS + BS + phytase (PT) (MBP). ENR, MOS, FOS, SB, MAN, PT, and BS were added at 100, 2,000, 9,000, 1,500, 300, 37, and 500 mg/kg, respectively. The experiment used a completely random block design with six replicates per group: 2400 Ross 308 broilers in the starter phase and 768 in the grower phase. All NAGPCs significantly improved body weight gain (P < 0.01), utilization of dry matter, organic matter, and crude protein (P < 0.05), villus height and villus height/crypt depth in the jejunum and ileum (P < 0.01), and decreased the feed conversion ratio (P < 0.01) at d 21 and 42. MMS, MMB, MFB, and MFM duodenum trypsin, lipase, and amylase activities increased significantly (P < 0.05) at d 21 and 42. On d 21 and 42, MMS, MMB, and MBP increased the abundance of Firmicutes and Bacteroides whereas MMB, MFB, and MBP decreased the abundance of Proteobacteria, compared to ENR and CON. Overall, the NAGPCs were found to have some beneficial effects and may be used as effective antibiotic replacements in broilers.
Collapse
Affiliation(s)
- Zunyan Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Weimin Zhu
- Qingdao Animal Husbandry and Veterinary Research Institute, Qingdao, People’s Republic of China
| | - Yingting Lin
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jia Chen
- Rongcheng Lidao Animal Husbandry and Veterinary Station, Rongcheng, People’s Republic of China
| | - Fenghua Zhu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Yixuan Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Low-protein diets for broilers: Current knowledge and potential strategies to improve performance and health, and to reduce environmental impact. Anim Feed Sci Technol 2023. [DOI: 10.1016/j.anifeedsci.2023.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Pan L, An D. Comparative energy and nitrogen excretion from growing pigs fed on corn, sorghum and wheat-based diets. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|