1
|
Castillo-Lopez E, Ricci S, Rivera-Chacon R, Sener-Aydemir A, Pacífico C, Reisinger N, Schwartz-Zimmermann HE, Berthiller F, Kreuzer-Redmer S, Zebeli Q. Dynamic interplay of immune response, metabolome, and microbiota in cows during high-grain feeding: insights from multi-omics analysis. Microbiol Spectr 2024; 12:e0094424. [PMID: 39162517 PMCID: PMC11448160 DOI: 10.1128/spectrum.00944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
This study explores the dynamics of immune gene expression, ruminal metabolome, and gut microbiota in cows due to the duration of high-grain feeding, shedding light on host response and microbial dynamics in parallel. Cows consumed forage for a week, then gradually transitioned to a high-grain diet, which they consumed for 4 weeks. Immune response was evaluated in ruminal papillae by expression of genes related to the nuclear factor-kappaB (NFkB) pathway and correlated with the microbiota. Rumen metabolome was evaluated with high-performance liquid chromatography coupled with mass spectrometry and anion-exchange chromatography. Rumen and fecal microbiota were evaluated with 16S rRNA gene amplicon sequencing. In the rumen, expression of inflammation-associated genes increased with the duration on high grain, indicating activation of pro-inflammatory cascades; microbial diversity decreased with a high-grain diet but stabilized after week 3 on high grain. Changes in microbial relative abundance and metabolite enrichment were observed throughout the 4 weeks on high grain, with increments in propionogenic taxa (i.e., Succinivibrionaceae). Metabolite enrichment analysis showed that at the start of high-grain feeding, simple carbohydrates were enriched; then, these were substituted by their fermentation products. There were correlations between certain ruminal bacterial taxa (i.e., Ruminococcaceae UCG-005) and expression of genes of the NFkB pathway, suggesting the influence of these taxa on host immune response. In feces, microbial diversity and several Ruminococcaceae members initially declined but recovered by weeks 3 and 4. Overall, despite the stabilization of microbial diversity, changes in microbial relative abundance and proinflammatory genes were observed throughout high-grain feeding, suggesting that cows need more than 4 weeks to fully adjust once consuming a high-grain diet.IMPORTANCEDespite the stepwise diet transition typically assumed to serve for animal adaptation, expression of signaling receptors, mediators, and downstream targets of nuclear factor-kappaB pathway were found throughout the 4 weeks on high grain, which correlated with changes in the rumen microbial profile. In addition, although microbial diversity recovered in the feces and stabilized in the rumen in week 3 on high grain, we observed changes in microbial relative abundance throughout the 4 weeks on high grain, suggesting that cows need more than 4 weeks to adjust once consuming this diet. Findings are particularly important to consider when planning experiments involving dietary changes.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Sara Ricci
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cátia Pacífico
- Biome Diagnostics GmbH, Vienna, Austria
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nicole Reisinger
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
2
|
Liu T, Li F, Xu J, La Y, Zhou J, Zheng C, Weng X. Transcriptomic analysis reveals that non-forage or forage fiber source promotes rumen development through different metabolic processes in lambs. Anim Biotechnol 2023; 34:1058-1071. [PMID: 34890306 DOI: 10.1080/10495398.2021.2011738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dietary fiber supplementation can stimulate rumen development in lambs during the pre-weaning period. However, it is unclear whether different sources of fiber have varying effects on rumen development. This study aimed to investigate the molecular mechanism of rumen morphological and functional development based on non-forage or forage as a starter dietary fiber source. Twenty-four male Hu lambs with similar body weights (BW, 3.67 ± 0.08 kg) were selected and divided into two groups that received diets supplemented with either alfalfa hay (AH) or soybean hull (SH). At the age of 70 days, six lambs were slaughtered from each treatment group for rumen fermentation and morphological analyses. Three samples of the rumen tissue from the ventral sac were collected for transcriptomic analysis. The results identified 633 differentially expressed genes (DEGs), of which 210 were upregulated and 423 were downregulated in the SH group compared with those in the AH group. The upregulated DEGs were most enriched in the immune function and proteolysis pathways, whereas the downregulated DEGs were mainly involved in cell proliferation, apoptosis, and differentiation pathways. These findings indicated that non-forage as a starter dietary fiber source improved immune function and enhanced nitrogen utilization, whereas forage facilitated rumen morphological development.
Collapse
Affiliation(s)
- Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianfeng Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juwang Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chen Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiuxiu Weng
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Xu Q, Ungerfeld EM, Morgavi DP, Waters SM, Liu J, Du W, Zhao S. Editorial: Rumen microbiome: interacting with host genetics, dietary nutrients metabolism, animal production, and environment. Front Microbiol 2023; 14:1267149. [PMID: 37779689 PMCID: PMC10539901 DOI: 10.3389/fmicb.2023.1267149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Affiliation(s)
- Qingbiao Xu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Emilio M. Ungerfeld
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias, Vilcún, La Araucanía, Chile
| | - Diego P. Morgavi
- INRAE, VetAgro Sup, UMR Herbivores, Université Clermont Auvergne, Saint-Genès-Champanelle, France
| | - Sinead M. Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Dunsany, Ireland
| | - Jinxin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wenjuan Du
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengguo Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Cheng C, Yin Y, Bian G. Effects of whole maize high-grain diet feeding on colonic fermentation and bacterial community in weaned lambs. Front Microbiol 2022; 13:1018284. [PMID: 36569065 PMCID: PMC9772272 DOI: 10.3389/fmicb.2022.1018284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
High-grain diet is commonly used in intensive production to boost yield in short term, which may cause adverse effects such as rumen and colonic acidosis in ruminants. Maize is one of the key components of high-grain diet, and different processing methods of maize affect the digestive absorption and gastrointestinal development of ruminants. To investigate the effects of maize form in high-grain diets on colonic fermentation and bacterial community of weaned lambs, twenty-two 2.5-month-old healthy Hu lambs were fed separately a maize meal low-grain diet (19.2% grain; CON), a maize meal high-grain diet (50.4% grain; CM), and a whole maize high-grain diet (50.4% grain; CG). After 7 weeks of feeding, the total volatile fatty acid concentration (P = 0.035) were significantly higher in lambs from CM than that from CON. The sequencing results of colonic content microbial composition revealed that the relative abundance of genera Parasutterella (P = 0.028), Comamonas (P = 0.031), Butyricicoccus (P = 0.049), and Olsenella (P = 0.010) were higher in CM than those in CON; compared with CM, the CG diet had the higher relative abundance of genera Bacteroides (P = 0.024) and Angelakisella (P = 0.020), while the lower relative abundance of genera Olsenella (P = 0.031) and Paraprevotella (P = 0.006). For colonic mucosal microbiota, the relative abundance of genera Duncaniella (P = 0.024), Succiniclasticum (P = 0.044), and Comamonas (P = 0.012) were significantly higher in CM than those in CON. In comparison, the relative abundance of genera Alistipes (P = 0.020) and Campylobacter (P = 0.017) were significantly lower. And the relative abundance of genera Colidextribacter (P = 0.005), Duncaniella (P = 0.032), Christensenella (P = 0.042), and Lawsonibacter (P = 0.018) were increased in the CG than those in the CM. Furthermore, the CG downregulated the relative abundance of genes encoding infectious-disease-parasitic (P = 0.049), cancer-specific-types (P = 0.049), and neurodegenerative-disease (P = 0.037) in colonic microbiota than those in the CM. Overall, these results indicated that maize with different grain sizes might influence the colonic health of weaned lambs by altering the composition of the colonic bacterial community.
Collapse
Affiliation(s)
- Chao Cheng
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Gaorui Bian
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| |
Collapse
|
5
|
Early Introduction of Plant Polysaccharides Drives the Establishment of Rabbit Gut Bacterial Ecosystems and the Acquisition of Microbial Functions. mSystems 2022; 7:e0024322. [PMID: 35674393 PMCID: PMC9239267 DOI: 10.1128/msystems.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In mammals, the introduction of solid food is pivotal for the establishment of the gut microbiota. However, the effects of the first food consumed on long-term microbiota trajectory and host response are still largely unknown. This study aimed to investigate the influences of (i) the timing of first solid food ingestion and (ii) the consumption of plant polysaccharides on bacterial community dynamics and host physiology using a rabbit model. To modulate the first exposure to solid nutrients, solid food was provided to suckling rabbits from two different time points (3 or 15 days of age). In parallel, food type was modulated with the provision of diets differing in carbohydrate content throughout life: the food either was formulated with a high proportion of rapidly fermentable fibers (RFF) or was starch-enriched. We found that access to solid food as of 3 days of age accelerated the gut microbiota maturation. Our data revealed differential effects according to the digestive segment: precocious solid food ingestion influenced to a greater extent the development of bacterial communities of the appendix vermiformis, whereas life course polysaccharides ingestion had marked effects on the cecal microbiota. Greater ingestion of RFF was assumed to promote pectin degradation as revealed by metabolomics analysis. However, transcriptomic and phenotypic host responses remained moderately affected by experimental treatments, suggesting little outcomes of the observed microbiome modulations on healthy subjects. In conclusion, our work highlighted the timing of solid food introduction and plant polysaccharides ingestion as two different tools to modulate microbiota implantation and functionality. IMPORTANCE Our study was designed to gain a better understanding of how different feeding patterns affect the dynamics of gut microbiomes and microbe–host interactions. This research showed that the timing of solid food introduction is a key component of the gut microbiota shaping in early developmental stages, though with lower impact on settled gut microbiota profiles in older individuals. This study also provided in-depth analysis of dietary polysaccharide effects on intestinal microbiota. The type of plant polysaccharides reaching the gut through the lifetime was described as an important modulator of the cecal microbiome and its activity. These findings will contribute to better define the interventions that can be employed for modulating the ecological succession of young mammal gut microbiota.
Collapse
|
6
|
Wen Z, Chen Y, Wu L, Tian H, Zhu N, Guo Y, Deng M, Liu J, Sun B. Effects of Broussonetia papyrifera silage on rumen fermentation parameters and microbes of Holstein heifers. AMB Express 2022; 12:62. [PMID: 35614273 PMCID: PMC9133286 DOI: 10.1186/s13568-022-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
The structure and types of rumen microbes are closely related to host health. This study aimed to evaluate the effect of Broussonetia papyrifera silage (BPS) gradually replacing the whole crop maize silage (WCMS) on total tract digestibility, rumen fermentation parameters, serum biochemical indicators, and rumen microbes of Holstein heifers. The diet treatment consisted of four proportions of BPS (0%, 25%, 50% and 75%) as substitute for WCMS (designated as T0, T25, T50 and T75, respectively). Twenty heifers (body weight = 245 ± 24 kg) were randomly divided into four groups of five heifers, and randomly received one diet. The feeding adaption period was 7 days, and the experiment period was 30 days. Our findings suggested that the digestibility of neutral detergent fiber and crude protein increased linearly with the increased in BPS (P < 0.05). The concentrations of total protein and albumin increased quadratically with the increased in BPS (P < 0.05). The 16s high-throughput sequencing showed that feeding BPS did not change the diversity and structure of the rumen microbes of heifers. However, the relative abundances of Tenericutes and SR1-Absconditabacteria increased linearly with the increased in BPS (P < 0.05). The Weighted Correlation Network Analysis results suggested that ALT concentration was positively correlated with the abundance of Prevotella-1 (r = 0.73; P = 0.007). In general, Holstein heifers fed with BPS did not change the diversity and uniformity of rumen microbes, and enhanced the body protein metabolism.
Collapse
|
7
|
Wang S, Chai J, Zhao G, Zhang N, Cui K, Bi Y, Ma T, Tu Y, Diao Q. The Temporal Dynamics of Rumen Microbiota in Early Weaned Lambs. Microorganisms 2022; 10:microorganisms10010144. [PMID: 35056593 PMCID: PMC8779368 DOI: 10.3390/microorganisms10010144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Weaning affects the development of ruminal bacteria in lambs during early life. However, the temporal dynamics of rumen microbiota in early weaned lambs is unknown compared to conventionally weaned lambs. In this study, one group was reared with their dams (control, CON) and conventionally weaned at 49 days (d), while the other lambs were weaned at 21 d (early weaning, EW) using starter. Rumen microbial samples collected at 26, 35, and 63 d were used for next-generation sequencing. Here, we found that the abundance and diversity of rumen microbiota in EW were significantly lower at 26 and 35 d than the CON. Linear discriminant analysis Effect Size (LEfSe) analysis was performed to identify the signature microbiota for EW at these three ages. At 26 d, Prevotella 7, Syntrophococcus, Sharpea, Dialister, Pseudoscardovia, and Megasphaera in the rumen of the EW group had greater relative abundances. At 35 d, the Lachnospiraceae_NK3A20_group was enriched in CON. On 63 d, Erysipelotrichaceae_UCG-002 was abundant in EW. Syntrophococcus and Megaspheaera in EW lambs were abundant at 26 and 35 d, but kept similar to CON at 63 d. The relative abundance of Erysipelotrichaceae_UCG-002 at all-time points was consistently higher in the EW group. In conclusion, early weaning led to a significant decrease in rumen microbiota richness and diversity in the short term. The changes in rumen microbiota are associated with the persistence of weaning stress. The temporal dynamics of relative abundances of Syntrophococcus, Megasphaera, and Ruminococcaceae_UCG-014 reflect the weaning stress over a short period and rumen recovery after early weaning.
Collapse
Affiliation(s)
- Shiqin Wang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jianmin Chai
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Guohong Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, College of Animal Science, Anhui Science and Technology University, Chuzhou 233100, China
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Kai Cui
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yanliang Bi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Tao Ma
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Yan Tu
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
| | - Qiyu Diao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.W.); (J.C.); (G.Z.); (N.Z.); (K.C.); (Y.B.); (T.M.); (Y.T.)
- Correspondence: ; Tel.: +86-010-8210-6055
| |
Collapse
|
8
|
Pan X, Li Z, Li B, Zhao C, Wang Y, Chen Y, Jiang Y. Dynamics of rumen gene expression, microbiome colonization, and their interplay in goats. BMC Genomics 2021; 22:288. [PMID: 33882826 PMCID: PMC8059226 DOI: 10.1186/s12864-021-07595-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/09/2021] [Indexed: 01/24/2023] Open
Abstract
Background Preweaned rumen development is vital for animal health and efficient fermentation. In this study, we integrated ruminal transcriptomic and metagenomic data to explore the dynamics of rumen functions, microbial colonization, and their functional interactions during the first 8 weeks of life in goats. Results The dynamic rumen transcriptomic and microbial profiles both exhibited two distinct phases during early rumen development. The differentially expressed genes of the rumen transcriptome between the two phases showed that the immune-related response was enriched in the first phase and nutrient-related metabolism was enriched in the second phase, whereas the differentially expressed genes of the rumen microbiome were enriched in bacteriocin biosynthesis and glycolysis/gluconeogenesis activities. The developmental shift in the rumen transcriptome (at d 21) was earlier than the feed stimulus (at d 25) and the shift in the rumen microbiome (at d 42). Additionally, 15 temporal dynamic rumen gene modules and 20 microbial modules were revealed by coexpression network analysis. Functional correlations between the rumen and its microbiome were primarily involved in rumen pH homeostasis, nitrogen metabolism and the immune response. Rumen gene modules associated with the microbial alpha diversity index were also enriched in the immune response process. Conclusions The present study touched the critical developmental process of rumen functions, microbial colonization and their functional interactions during preweaned development. Taken together, these results demonstrated that rumen development at the first phase is more likely a programmed process rather than stimulation from feed and the microbiome, while the shift of rumen metagenomes was likely regulated by both the diet and host. The intensive functional correlations between rumen genes and the microbiome demonstrated that synergistic processes occurred between them during early rumen development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07595-1.
Collapse
Affiliation(s)
- Xiangyu Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zongjun Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bibo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chen Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Sun D, Yin Y, Guo C, Liu L, Mao S, Zhu W, Liu J. Transcriptomic analysis reveals the molecular mechanisms of rumen wall morphological and functional development induced by different solid diet introduction in a lamb model. J Anim Sci Biotechnol 2021; 12:33. [PMID: 33750470 PMCID: PMC7944623 DOI: 10.1186/s40104-021-00556-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Background This study aimed to elucidate the molecular mechanisms of solid diet introduction initiating the cellular growth and maturation of rumen tissues and characterize the shared and unique biological processes upon different solid diet regimes. Methods Twenty-four Hu lambs were randomly allocated to three groups fed following diets: goat milk powder only (M, n = 8), goat milk powder + alfalfa hay (MH, n = 8), and goat milk powder + concentrate starter (MC, n = 8). At 42 days of age, the lambs were slaughtered. Ruminal fluid sample was collected for analysis of concentration of volatile fatty acid (VFA) and microbial crude protein (MCP). The sample of the rumen wall from the ventral sac was collected for analysis of rumen papilla morphology and transcriptomics. Results Compared with the M group, MH and MC group had a higher concentration of VFA, MCP, rumen weight, and rumen papilla area. The transcriptomic results of rumen wall showed that there were 312 shared differentially expressed genes (DEGs) between in “MH vs. M” and “MC vs. M”, and 232 or 796 unique DEGs observed in “MH vs. M” or “MC vs. M”, respectively. The shared DEGs were most enriched in VFA absorption and metabolism, such as peroxisome proliferator-activated receptor (PPAR) signaling pathway, butanoate metabolism, and synthesis and degradation of ketone bodies. Additionally, a weighted gene co-expression network analysis identified M16 (2,052 genes) and M18 (579 genes) modules were positively correlated with VFA and rumen wall morphology. The M16 module was mainly related to metabolism pathway, while the M18 module was mainly associated with signaling transport. Moreover, hay specifically depressed expression of genes involved in cytokine production, immune response, and immunocyte activation, and concentrate starter mainly altered nutrient transport and metabolism, especially ion transport, amino acid, and fatty acid metabolism. Conclusions The energy production during VFA metabolism may drive the rumen wall development directly. The hay introduction facilitated establishment of immune function, while the concentrate starter enhanced nutrient transport and metabolism, which are important biological processes required for rumen development. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00556-4.
Collapse
Affiliation(s)
- Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou, 313000, China
| | - Changzheng Guo
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China. .,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China. .,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
10
|
Lin L, Trabi EB, Xie F, Mao S. Comparison of the fermentation and bacterial community in the colon of Hu sheep fed a low-grain, non-pelleted, or pelleted high-grain diet. Appl Microbiol Biotechnol 2021; 105:2071-2080. [PMID: 33559720 DOI: 10.1007/s00253-021-11158-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Microbial fermentation in the hindgut is likely an important contributor to energy availability in ruminants, except for the rumen. This study aimed to investigate commensal bacteria in the colon influenced by diverse dietary niches. Fifteen male sheep were randomly allotted into three feeding groups: non-pelleted low-grain (CON, n = 5), non-pelleted high-grain (HG, n = 5), and pelleted high-grain (HP, n = 5) diets. The HG and HP groups had higher fermentation parameters than the CON group, especially acetate concentration (CON = 46.91; HG = 61.66; HP = 77.99). The HG diet altered the composition of commensal bacteria in the colon in comparison to the CON group, including the increase of genera related to acetate production (e.g., Acetitomaculum spp.), butyrate production (e.g., Coprococcus spp. and Subdoligranulum spp.), and starch degradation (e.g., Prevotella spp., Roseburia spp., and Oscillibacter spp.). The colon functional compendium had co-alteration with taxonomic changes that indicated non-pelleted HG diet caused a detrimental colonic niche. The HP diet specifically promoted the abundance of Ruminococcus, Olsenella, and Alloprevotella genera to achieve the highest acetate concentration and decreased the starch-degrader Roseburia spp. and Oscillibacter spp. in contrast to the HG group. Our results provide a systematic view of the microbial fermentation, community, and functional guilds in colonic digesta and mucosa in regard to using an HP diet to maintain colonic niche homeostasis under the adverse influence of the HG diet.Key Points• Non-pelleted and pelleted high-grain diets altered sheep colonic fermentation.• Non-pelleted and pelleted high-grain diets resulted in diverse microbial composition.• The pelleted method ameliorated microbial functions compared with the high-grain diet.
Collapse
Affiliation(s)
- Limei Lin
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ehab Bo Trabi
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Xie
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Centre for Ruminant Nutrition and Feed Engineering Technology Research, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China. .,Nanjing Zhirun Biological Science and Technology Co., Ltd., No.19 Binhuai Avenue, Economic Development Zone, Lishui District, Nanjing City, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Shen J, Li Z, Yu Z, Zhu W. Effects of dietary replacement of soybean meal with dried distillers grains with solubles on the microbiota occupying different ecological niches in the rumen of growing Hu lambs. J Anim Sci Biotechnol 2020; 11:93. [PMID: 32939263 PMCID: PMC7487462 DOI: 10.1186/s40104-020-00499-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/16/2020] [Indexed: 11/11/2022] Open
Abstract
Background Diet has a profound impact on the rumen microbiota, and the impact can vary among the different rumen ecological niches (REN). This study investigated the effects of dietary replacement of soybean meal (SBM) with dried distillers grains with solubles (DDGS) on the rumen microbiota occupying different REN of growing Hu lambs. After a 9-week feeding trial, 6 lambs from each dietary treatment (SBM vs. DDGS-based diets) were slaughtered for sample collection. The microbiota of the rumen solid, liquid, and epithelium fractions was examined using amplicon sequencing analysis of bacterial 16S rRNA gene, functional prediction, and qPCR. Results No interaction of dietary protein source (PS) and REN were detected for virtually all the measurements made in this study. The DDGS substitution resulted in very limited influence on bacterial community structure. However, the metabolic pathways predicted from 16S rRNA gene sequences varied greatly between SBM- and DDGS-based diets. The populations of rumen total bacteria, fungi, sulfate-reducing bacteria (SRB), and methanogens were not influenced by DDGS substitution, but the population of protozoa was reduced. The bacterial communities in rumen solid (RS) and liquid (RL) were similar in taxonomic composition but were different in relative abundance of some taxa. In contrast, the bacterial composition and relative abundance of rumen epithelium (RE) were greatly distinct from those of the RS and the RL. In alignment with the bacterial relative abundance, the metabolic pathways predicted from 16S rRNA genes also varied greatly among the different REN. The populations of total bacteria, protozoa, and methanogens attached to the RE were smaller than those in the RS and RL, and the fungal population on the rumen epithelium was smaller than that in the RS but similar to that in the RL. On the contrary, the SRB population on the RE was greater than that in the RS and RL. Conclusions Substitution of SBM with DDGS had greater impact to the protozoa than to the other microbes, and the microbial community structure and functions at different REN are distinct and niche-adapted.
Collapse
Affiliation(s)
- Junshi Shen
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhipeng Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,Department of Special Animal Nutrition and Feed Science, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112 China
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
12
|
Lv X, Cui K, Qi M, Wang S, Diao Q, Zhang N. Ruminal Microbiota and Fermentation in Response to Dietary Protein and Energy Levels in Weaned Lambs. Animals (Basel) 2020; 10:ani10010109. [PMID: 31936592 PMCID: PMC7022951 DOI: 10.3390/ani10010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Ruminants, such as sheep, are economically important because they contribute to digesting and converting plant materials into edible meat and milk for humans to consume. An adequate plane of nutrients, such as energy and protein, is essential for rumen development and growth. However, sheep production is mostly affected by inadequate nutrition in rural areas of China. As one of the most prolific and perennial estrus breeds in China, Hu sheep has huge potential for catering to the growing meat demands of the market and consumers. In this study, the effects of dietary energy and protein levels on growth performance, microbial diversity, and physiological properties of the rumen in weaned lambs were evaluated. The results showed that a low dietary energy level restrained growth performance and changed the microbiota and associated ruminal fermentation phenotypes of lambs. However, protein had a minor effect. The findings are of great significance for promoting rumen development and establishing the optimal nutrient supply strategy for lambs. Abstract Supplying sufficient nutrients, such as dietary energy and protein, has a great effect on the growth and rumen development of ruminants. This study was conducted to evaluate the effects of dietary energy and protein levels on growth performance, microbial diversity, and structural and physiological properties of the rumen in weaned lambs. A total of 64 two-month-old Hu lambs were randomly allotted to 2 × 2 factorial arrangements with four replicates and with four lambs (half male and half female) in each replicate. The first factor was two levels of dietary metabolizable energy (ME) density (ME = 10.9 MJ/Kg or 8.6 MJ/Kg), and the second factor was two levels of dietary crude protein (CP) content (CP = 15.7% or 11.8%). The trial lasted for 60 days. A low dietary energy level restrained the growth performance of lambs (p < 0.05). The ruminal concentration of acetate and the ratio of acetate to propionate increased but the propionate concentration decreased significantly with the low energy diet. However, the rumen morphology was not affected by the diet energy and protein levels. Moreover, a low energy diet increased ruminal bacterial diversity but reduced the abundance of the phylum Proteobacteria (p < 0.05) and genus Succinivibrionaceae_uncultured (p < 0.05), which was associated with the change in ruminal fermentation phenotypes. By indicator species analysis, we found three indicator OTUs in the high energy group (Succinivibrionaceae_uncultured, Veillonellaceae_unclassified and Veillonellaceae_uncultured (p < 0.01)) and two indicator OTUs in the low energy group (Bacteroidales_norank and Lachnospiraceae_uncultured (p < 0.01)). In conclusion, these findings added new dimensions to our understanding of the diet effect on rumen microbial community and fermentation response, and are of great significance for establishing the optimal nutrient supply strategy for lambs.
Collapse
|
13
|
Chaucheyras-Durand F, Ameilbonne A, Auffret P, Bernard M, Mialon MM, Dunière L, Forano E. Supplementation of live yeast based feed additive in early life promotes rumen microbial colonization and fibrolytic potential in lambs. Sci Rep 2019; 9:19216. [PMID: 31844130 PMCID: PMC6914811 DOI: 10.1038/s41598-019-55825-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Rumen microbiota is of paramount importance for ruminant digestion efficiency as the microbial fermentations supply the host animal with essential sources of energy and nitrogen. Early separation of newborns from the dam and distribution of artificial milk (Artificial Milking System or AMS) could impair rumen microbial colonization, which would not only affect rumen function but also have possible negative effects on hindgut homeostasis, and impact animal health and performance. In this study, we monitored microbial communities in the rumen and the feces of 16 lambs separated from their dams from 12 h of age and artificially fed with milk replacer and starter feed from d8, in absence or presence of a combination of the live yeast Saccharomyces cerevisiae CNCM I-1077 and selected yeast metabolites. Microbial groups and targeted bacterial species were quantified by qPCR and microbial diversity and composition were assessed by 16S rDNA amplicon sequencing in samples collected from birth to 2 months of age. The fibrolytic potential of the rumen microbiota was analyzed with a DNA microarray targeting genes coding for 8 glycoside hydrolase (GH) families. In Control lambs, poor establishment of fibrolytic communities was observed. Microbial composition shifted as the lambs aged. The live yeast supplement induced significant changes in relative abundances of a few bacterial OTUs across time in the rumen samples, among which some involved in crucial rumen function, and favored establishment of Trichostomatia and Neocallimastigaceae eukaryotic families. The supplemented lambs also harbored greater abundances in Fibrobacter succinogenes after weaning. Microarray data indicated that key cellulase and hemicellulase encoding-genes were present from early age in the rumen and that in the Supplemented lambs, a greater proportion of hemicellulase genes was present. Moreover, a higher proportion of GH genes from ciliate protozoa and fungi was found in the rumen of those animals. This yeast combination improved microbial colonization in the maturing rumen, with a potentially more specialized ecosystem towards efficient fiber degradation, which suggests a possible positive impact on lamb gut development and digestive efficiency.
Collapse
Affiliation(s)
- Frédérique Chaucheyras-Durand
- Lallemand SAS, 31702, Blagnac, France. .,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France.
| | - Aurélie Ameilbonne
- Lallemand SAS, 31702, Blagnac, France.,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France.,Ifremer, UMR, 241 EIO, Tahiti, French Polynesia
| | - Mickaël Bernard
- UE 1414 Herbipôle, INRA Auvergne Rhône Alpes, F-63122, Saint-Genès Champanelle, France
| | - Marie-Madeleine Mialon
- Université Clermont Auvergne, INRA, VetAgro Sup, UMR 1213 Herbivores, F-63000, Clermont-Ferrand, France
| | - Lysiane Dunière
- Lallemand SAS, 31702, Blagnac, France.,Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, UMR 454 MEDIS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
14
|
Wang S, Ma T, Zhao G, Zhang N, Tu Y, Li F, Cui K, Bi Y, Ding H, Diao Q. Effect of Age and Weaning on Growth Performance, Rumen Fermentation, and Serum Parameters in Lambs Fed Starter with Limited Ewe-Lamb Interaction. Animals (Basel) 2019; 9:E825. [PMID: 31635360 PMCID: PMC6826662 DOI: 10.3390/ani9100825] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/15/2023] Open
Abstract
Sixty neonatal Hu lambs were weaned at either 21 (n = 30) (early weaning, EW) or 49 days (n = 30) of age (control, CON). The starter intake and body weight (BW) of lambs was recorded weekly from birth to 63 days of age. Diarrhea rate of lambs was measured from birth to 35 days. Six randomly selected lambs from each treatment were slaughtered at 26, 35, and 63 days of age, respectively. Ruminal pH, NH3-N, and volatile fatty acid (VFA) concentration, as well as serum parameters including immunity, antioxidant status, and inflammatory parameters from randomly selected lambs from each treatment were measured. There was no difference in BW at birth and day 21 between the two groups of lambs (p > 0.05). However, BW of the lambs in the EW group was significantly lower than those in the CON group (p < 0.01) from 28 to 49 days of age. Average daily gain (ADG) of the lambs in the EW group was significantly lower than those in the CON group (p < 0.01) at three weeks after early weaning. Starter intake of the lambs in the EW group was obviously higher than that in the CON group (p < 0.01) from day 28 to 49. In addition, the diarrhea rate was significantly higher than that in the CON group from day 5 to 14 after weaning (p < 0.01). The EW group had heavier carcasses (p < 0.01) and rumen relative to whole stomach weights (p < 0.01). Rumen pH was increased by age (p < 0.01) and was not affected by early weaning (p > 0.05). Early weaning decreased abomasum relative to whole stomach weight (p < 0.01) and increased total VFA concentrations (p < 0.01) at day 26. There was no difference in lambs' immunity and stress indicators (p > 0.05). The results indicated that lambs weaned at 21 days of age had decreased ADG and higher diarrhea rate, although the overall immunity was not compromised. Long-term study is needed to further validate the feasibility of early weaning strategy in lambs.
Collapse
Affiliation(s)
- Shiqin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Tao Ma
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Guohong Zhao
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Naifeng Zhang
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Yan Tu
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Kai Cui
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Yanliang Bi
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Hongbiao Ding
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Qiyu Diao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
- Feed Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
15
|
Zhao K, Chen YH, Penner GB, Oba M, Guan LL. Transcriptome analysis of ruminal epithelia revealed potential regulatory mechanisms involved in host adaptation to gradual high fermentable dietary transition in beef cattle. BMC Genomics 2017; 18:976. [PMID: 29258446 PMCID: PMC5735905 DOI: 10.1186/s12864-017-4317-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
Background The transition from a high forage to a highly fermentable diet can induce digestive disorders in the rumen. To date, the host mechanisms that regulate the adaption to such dietary transition are largely unknown. To understand the molecular mechanisms involved in such phenomena, RNA-sequencing was performed to identify the changes in the transcriptome of ruminal epithelia during gradual transition from a diet containing 0% to 89% grain. Results In total, the expression of 11,044, 11,322 and 11,282 genes were detected in ruminal epithelia of beef heifers (n = 15) fed 0%, 72% and 89% barley grain diet, respectively. The transcriptome profiles of rumen epithelia differed between low grain diet (LGD) (0% grain) and high grain diet (HGD) (72% and 89%), and HGD tended to reduce the expression of genes involved in epithelial catalytic and binding activities. When diet was changed from 72% to 89% grain, the mean ruminal pH change was significantly different among individual heifers with five of them decreased (down group (DG); from 6.30±0.09 to 5.87±0.15, P < 0.01) and five of them increased (up group (UG); from 5.84±0.42 to 6.35±0.37, P < 0.05). The functional analysis of differentially expressed (DE) genes revealed inhibited “Immune response of leukocytes”, “Attraction of phagocytes”, and “Cell movement of leukocytes” (P < 0.05) functions (Z-score = −2.2, −2.2 and −2.0, respectively) in DG, and inhibited “Concentration of lipid” and “Proliferation of epithelial cells” functions in UG (Z-score = −2.0, and −1.8, respectively). In addition, the expression of genes involved in ketogenesis (HMGCL) and lipid synthesis (SREBF2, FABP4) was increased in DG, while the expression of ketogenesis (ACAT2, HMGCS) and cholesterol synthesis related genes (HMGC and FDPS) were deceased in UG. Furthermore, the upstream regulators were found to be involved in the regulation of immune response and cell cycle progress, and SNP (g.46834311A > G) in FABP4 was identified between two groups of animals (P < 0.1). Conclusion The identified genes, upstream regulators, and SNP could be potential genetic markers that may account for the varied individual ruminal pH responses to the dietary transition stress. Electronic supplementary material The online version of this article (10.1186/s12864-017-4317-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- K Zhao
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, 416 F Agr/For, Edmonton, AB, T6G2P5, Canada.,College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Y H Chen
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, 416 F Agr/For, Edmonton, AB, T6G2P5, Canada
| | - G B Penner
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N5A8, Canada
| | - M Oba
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, 416 F Agr/For, Edmonton, AB, T6G2P5, Canada
| | - L L Guan
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, 416 F Agr/For, Edmonton, AB, T6G2P5, Canada.
| |
Collapse
|
16
|
Multi-Omic Biogeography of the Gastrointestinal Microbiota of a Pre-Weaned Lamb. Proteomes 2017; 5:proteomes5040036. [PMID: 29258228 PMCID: PMC5748571 DOI: 10.3390/proteomes5040036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
The digestive functions of the pre-weaned lamb gastrointestinal tracts (GITs) have been the subject of much research in recent years, but the microbial and host functions underlying these complex processes remain largely unknown. Here, we undertook a proof-of-principle metaproteogenomic investigation on luminal and mucosal samples collected from 10 GITs of a 30-day-old pre-weaned lamb. We demonstrate that the analysis of the diverse ecological niches along the GITs can reveal microbiota composition and metabolic functions, although low amounts of microbial proteins could be identified in the small intestinal and mucosal samples. Our data suggest that a 30-day lamb has already developed mature microbial functions in the forestomachs, while the effect of the milky diet appears to be more evident in the remaining GITs. We also report the distribution and the relative abundance of the host functions, active at the GIT level, with a special focus on those involved in digestive processes. In conclusion, this pilot study supports the suitability of a metaproteogenomic approach to the characterization of microbial and host functions of the lamb GITs, opening the way to further studies aimed at investigating the impact of early dietary interventions on the GIT microbiota of small ruminants.
Collapse
|
17
|
Wang Y, Xu L, Liu J, Zhu W, Mao S. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep. Front Microbiol 2017; 8:2080. [PMID: 29123511 PMCID: PMC5662643 DOI: 10.3389/fmicb.2017.02080] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022] Open
Abstract
This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG) diet. A total of 20 male sheep were randomly assigned to four groups (n = 5 for each). The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7), 14 (HG14), or 28 (HG28) days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA) and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased (P = 0.007), and the concentrations of total VFA linearly increased (P < 0.001). Microbial analysis showed that an HG diet linearly reduced (P < 0.050) the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella, Coprococcus, Roseburia, and Clostridium_sensu_stricto_1, and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 (P = 0.038), IL-1β (P = 0.045), IL-6 (P = 0.050), and TNF-α (P = 0.020) increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic mucosal bacterial communities, which eventually caused colonic mucosal damage and led to colonic dysfunction, and these changes occurred gradually over at least 4 weeks.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Xu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
Liu J, Bian G, Sun D, Zhu W, Mao S. Starter Feeding Supplementation Alters Colonic Mucosal Bacterial Communities and Modulates Mucosal Immune Homeostasis in Newborn Lambs. Front Microbiol 2017; 8:429. [PMID: 28382025 PMCID: PMC5361653 DOI: 10.3389/fmicb.2017.00429] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/28/2017] [Indexed: 02/01/2023] Open
Abstract
This study aims to investigate the effect of starter feeding supplementation on colonic mucosal bacterial communities and on mucosal immune homeostasis in pre-weaned lambs. We selected eight pairs of 10-day-old lamb twins. One twin was fed breast milk (M, n = 8), while the other was fed breast milk plus starter (M+S, n = 8). The lambs were sacrificed at 56 days age. Colonic content was collected to determine the pH and the concentrations of volatile fatty acids (VFA) and lactate. The colonic mucosa was harvested to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and toll-like receptors (TLR) using quantitative real-time PCR. The results show that starter feeding decreased luminal pH and increased the concentrations of acetate, propionate, butyrate, total VFA, and lactate in the colon. The principal coordinate analysis (PCA) and analysis of molecular variance show that starter feeding supplementation significantly affected the colonic mucosal bacterial communities with a higher relative abundance of the dominant taxa unclassified S24-7, Oscillibacter, Prevotella, Parabacteroides, Bifidobacterium, Ruminobacter, and Succinivibrio, and a lower proportion of unclassified Ruminococcaceae, RC9_gut_group, Blautia, Phocaeicola, Phascolarctobacterium, unclassified BS11_gut_group, unclassified family_XIII, and Campylobacter in lambs. Meanwhile, starter feeding decreased mRNA expression of TLR4 and cytokines TNF-α and IFN-γ in colonic tissue. Furthermore, the changes in the colonic mucosal mRNA expression of TLR and cytokines were associated with changes in mucosal bacterial composition. These findings may provide new insights into colonic mucosal bacteria and immune homeostasis in developing lambs.
Collapse
Affiliation(s)
- Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Gaorui Bian
- Department of NGS Sequencing, Tianyi Health Sciences Institute Zhenjiang, China
| | - Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University Nanjing, China
| |
Collapse
|