1
|
Przybyło M, Flaga J, Clauss M, Szczepanik K, Miltko R, Bełżecki G, Kowalski ZM, Górka P. Increased intake of mono- and disaccharides by Reeves's muntjac (Muntiacus reevesi). Effect on gastrointestinal tract structure and function and blood parameters. J Anim Physiol Anim Nutr (Berl) 2022; 106:922-938. [PMID: 35587535 DOI: 10.1111/jpn.13727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine the effect of an increased mono- and disaccharide (MD) intake on selected functions and structure of the gastrointestinal tract (GIT), and selected blood parameters in Reeves's muntjac (Muntiacus reevesi), a small browsing ruminant. Eighteen male muntjacs were fed diets consisting of lucerne (ad libitum), a high fibre pellet (100 g/day) and wheat bran (30 g/day) without (MD0) or with addition of 10 or 20 g of glucose, fructose and sucrose mixture/day (MD10 and MD20, respectively) for 14 days. MD dosages were set to increase intake of these saccharides by 25% and 50% relative to MD0, which resulted in a range of water-soluble carbohydrate content in the consumed dry matter from 7% to 12%. Compared to MD0 animals, MD20 animals had a lower dry matter intake, a higher MD concentrations in the reticulorumen (RR), abomasal and small intestinal digesta, higher ruminal butyrate concentration, higher SGLT1 expression in the epithelium of proximal jejunum, higher plasma glucose, lower RR tissue weight but greater caecal tissue weight (p ≤ 0.05), and had or tended to have shorter papillae and lower mucosa surface area in the Atrium ruminis (by 44%; p = 0.02 and p = 0.10, respectively); MD10 animals tended to have higher MD concentrations in the abomasal and small intestinal digesta (p ≤ 0.10), and a higher amylolytic activity (p = 0.02) as well as a tendency to lower xylanolytic activity in the RR digesta (p = 0.06). MD supplementation did not affect ruminal pH. In conclusion, low to moderate increase of MD intake increased MD concentrations in the RR, abomasal and intestinal digesta, and SGLT1 expression in intestinal epithelium, suggesting incomplete fermentation of those saccharides in the RR. MD supplementation dose-dependently affects structure of GIT in Reeves's muntjac.
Collapse
Affiliation(s)
- Marcin Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Jadwiga Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Kinga Szczepanik
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Renata Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Grzegorz Bełżecki
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| | - Paweł Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, Kraków, Poland
| |
Collapse
|
2
|
Yao D, Su R, Zhang Y, Wang B, Hou Y, Luo Y, Sun L, Guo Y, Jin Y. Impact of dietary Lactobacillus supplementation on intramuscular fat deposition and meat quality of Sunit sheep. J Food Biochem 2022; 46:e14207. [PMID: 35502134 DOI: 10.1111/jfbc.14207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022]
Abstract
To investigate the impacts of dietary Lactobacillus supplementation on meat quality such as edible quality and nutritional value of Sunit sheep, a 90-day feeding experiment (Lactobacillus dietary group, R group; non-Lactobacillus dietary group, C group) using twelve 3-month-old Sunit sheep was conducted. The deposition of intramuscular fat (IMF) was increased (p < .05) while the share force and cooking loss were decreased (p < .05) in the R group compared with the C group. The proportions of seven kinds of fatty acids (FAs) have changed significantly (p < .05), especially with higher functional FAs and lower trans-FA in the R group. Metabonomics analysis showed that the metabolites and pathway-related lipid syntheses, such as carnitine cycle, tricarboxylic acid cycle, and glycerophosphocholine metabolic pathway, have significantly changed in the R group. The Lactobacillus dietary supplements impacted the variation of IMF deposition and FAs composition by altering the lipid metabolism pathways of Sunit sheep and then changed the edible quality and nutritional value. PRACTICAL APPLICATIONS: It is well known that the intramuscular fat (IMF) and fatty acids composition in livestock is positively correlated with various aspects of meat quality such as edible quality and nutritional value, which are related to consumer preference. The present study analyzed the effects of Lactobacillus supplement on the intramuscular fat deposition and meat quality of Sunit sheep, which resulted in the increase of IMF, and the differences of fatty acids composition, especially the functional fatty acids. It was explored the mechanism of Lactobacillus affect the variation of lipid metabolism pathways and key metabolites in sheep, which suggested that altering the feeding regimen could improve the meat quality of agri-animals.
Collapse
Affiliation(s)
- Duo Yao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation, Hohhot, China
| | - Rina Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yue Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Bohui Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yanru Hou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yulong Luo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yueying Guo
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
3
|
Fukumori R, Ikeno R, Izumi K, Doi K, Otsuka M, Suzuki K, Oikawa S. The effect of sodium butyrate supplementation on ruminal and fecal pH and serum lipopolysaccharide-binding protein after ruminal acidosis challenge in nonlactating cows. Anim Sci J 2021; 92:e13673. [PMID: 34951079 DOI: 10.1111/asj.13673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022]
Abstract
The objective of this study was to evaluate effects of sodium-butyrate supplementation on gastrointestinal function and the inflammatory response to ruminal acidosis (RA) challenge in cows. Four nonlactating cows with a rumen cannula were assigned to two treatments in a crossover design. Treatments were ruminal administration of sodium-butyrate (BUT) or control (CON). Sodium-butyrate was provided as Gustor BP70 and administered at a butyrate dose of 0.04% per kg body weight. The CON premix was made by replacing sodium-butyrate with wheat bran. Experimental periods were 28 days long with 21-day washout period separating the treatments. On Day 25 of each period, corn starch was ruminally administered at 0.7% per kg body weight as RA challenge. After RA challenge, ruminal pH was lower, and endotoxin concentration was higher for cows provided with BUT than those with CON, but the increase in fecal starch and the decrease in fecal pH were attenuated by BUT. The effect of butyrate supplementation on serum lipopolysaccharide-binding protein after RA challenge was not found. From these findings, butyrate supplementation mitigated rectal acidosis by reducing the flux of fermentable carbohydrate into the large intestine. An anti-inflammatory effect of butyrate was not observed, possibly due to lower pH and higher endotoxin concentration in the rumen.
Collapse
Affiliation(s)
- Rika Fukumori
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Rina Ikeno
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Kenichi Izumi
- Department of Sutainable Agricultrure, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Kazuya Doi
- Department of Sutainable Agricultrure, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Marina Otsuka
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Kazuyuki Suzuki
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Shin Oikawa
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
4
|
Flaga J, Przybyło M, Górka P. Gene Expression Analysis with No Sequence Data: Study on Reeves's Muntjac ( Muntiacus reevesi). Curr Issues Mol Biol 2021; 43:1576-1582. [PMID: 34698093 PMCID: PMC8929141 DOI: 10.3390/cimb43030111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Despite scientific progress, the gene sequences for many species not commonly used in research have not yet been analyzed. This makes it difficult to carry out molecular studies on such animals, as the sequence of genes is the basic information used in many techniques. In this study, we attempt to design primers for a real-time PCR analysis, basing on a comparative analysis of selected gene sequences of species related to Reeves's muntjac (Muntiacus reevesi) and by identifying highly conservative regions. Results of PCR products sequencing and their alignment with the GenBank collection show that all selected primers gave products highly similar (> 90%) to the intended target (among compared species), which led us to the conclusion that our primers may be used for further analyses of gene expression.
Collapse
|
5
|
Effect of Rye Grain Derived from Different Cultivars or Maize Grain Use in the Diet on Ruminal Fermentation Parameters and Nutrient Digestibility in Sheep. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Six wether sheep with ruminal and duodenal cannulas were used in a replicated 3 × 3 Latin square to determine the effect of rye grain (from an open-pollinated or a hybrid cultivar) and maize grain from hybrid cultivar inclusion in the diet on ruminal fermentation parameters and nutrient digestion in different gastrointestinal tract compartments. The experimental diets consisted of meadow hay (800 g/day) and a concentrate mixture (300 g/day) that contained rye grain from an openpollinated cultivar (OPRG), rye grain from a hybrid cultivar (HRG), or maize grain from a hybrid cultivar (MG) as a main energy source. Each experimental period lasted 17 days and consisted of 10 days for diet adaptation and 7 days for data and sample collection. Ruminal fermentation (pH, short-chain fatty acids, and ammonia concentration) and nutrient digestion up to the duodenum (in reticulorumen, omasum, and abomasum), in the intestine, as well as in the total digestive tract was investigated. Mean ruminal pH was higher for MG compared to HRG and OPRG (P<0.01) but did not differ between HRG and OPRG (6.45, 6.35, and 6.29 for MG, HRG, and OPRG, respectively). Treatment did not affect short-chain fatty acid concentration in the rumen, except for the molar proportions of valeric acid and of isovaleric acid of the total short-chain fatty acids, which was or tended to be higher (P≤0.06) for MG compared to HRG and OPRG. Less starch was digested in the gastrointestinal tract up to the duodenum and more in the intestine for MG compared to HRG and OPRG (P=0.01); however, total tract nutrient digestibility did not differ between treatments. In conclusion, usage of rye grain in sheep diets resulted in a lower ruminal pH compared to maize grain usage. No differences for ruminal fermentation, nutrient digestion up to the duodenum, in the intestine, as well as in the total digestive tract between rye grain from open-pollinated and hybrid cultivar usage in sheep diets were found.
Collapse
|
6
|
Micek P, Słota K, Górka P. Effect of heat treatment and heat treatment in combination with lignosulfonate on in situ rumen degradability of canola cake crude protein, lysine, and methionine. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2018-0216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the effect of heat treatment alone or in combination with the addition of lignosulfonate (LSO3) on canola cake protein, lysine, and methionine degradation in the rumen. Cold-pressed canola cake was left untreated, heated at 90, 110, 130, or 150 °C, or processed with 5% of LSO3 (in dry matter) and then heated. Effective rumen degradability of crude protein (CP), lysine, and methionine was less for treated than untreated canola cake (P < 0.05) and decreased with increased temperature of heating, but particularly when canola cake was heated at 150 °C (quadratic, P < 0.01). In general, effective rumen degradability of CP, lysine, and methionine was less for canola cake heated at 130 °C in combination with LSO3 compared with canola cake heat treated only (quadratic × LSO3 interaction, P ≤ 0.07). Results of this study indicate that high temperature heating (130 °C or greater for 60 min) may be necessary to protect canola cake protein from degradation in the rumen, and the combination of heat treatment and LSO3 may be more effective in protecting canola cake protein, lysine, and methionine from degradation in the rumen than the use of heat treatment only.
Collapse
Affiliation(s)
- Piotr Micek
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Katarzyna Słota
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - Paweł Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Górka P, Sliwinski B, Flaga J, Olszewski J, Nawrocka P, Sobkowiak K, Miltko R, Godlewski MM, Zabielski R, Kowalski ZM. Effect of exogenous butyrate on the gastrointestinal tract of sheep. II. Hydrolytic activity in the rumen and structure and function of the small intestine. J Anim Sci 2019; 96:5325-5335. [PMID: 30321354 DOI: 10.1093/jas/sky368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/03/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to determine the effect of exogenous butyrate on the activity of carbohydrate-digesting enzymes in the reticuloruminal digesta and structure and selected functions of the small intestine in sheep. Eighteen rams (30.8 ± 2.1 kg; 12 to 15 mo of age) were fed for 14 d a diet without (CTRL) or with sodium butyrate (BUT; 36 g/kg of offered DM). Butyrate concentration in the reticuloruminal fluid and proximal small intestinal digesta was greater for BUT compared with CTRL (P ≤ 0.05). Amylolytic activity was greater, whereas cellulolytic and xylanolytic activity in the reticuloruminal digesta was less for BUT compared with CTRL (P ≤ 0.04). Relative to BW, small intestinal tissue mass and small intestine length did not differ between treatments (P ≥ 0.15); however, absolute length of the small intestine was greater for BUT compared with CTRL (P = 0.04). In the duodenum, crypt depth tended (P = 0.10) to be greater, whereas in the ileum, crypt depth and muscularis thickness tended (P = 0.10) to be less for BUT compared with CTRL. Mitosis-to-apoptosis ratio in the proximal jejunum was greater for CTRL compared with BUT (P = 0.02). Expression of G-protein-coupled receptor 43 mRNA in the duodenal epithelium was greater for BUT compared with CTRL (P < 0.01). On the other hand, peptide transporter 1 mRNA expression in the distal sections of the small intestine, as well as activity of aminopeptidase A and dipeptidylpeptidase IV, were greater for CTRL (P ≤ 0.05). In summary, exogenous butyrate supplementation in feed affects hydrolytic activity in the rumen, and increased butyrate flow out of the reticulorumen affects both proximal and distal sections of the small intestine in sheep.
Collapse
Affiliation(s)
- Pawel Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Bogdan Sliwinski
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska, Balice, Poland
| | - Jadwiga Flaga
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Jaroslaw Olszewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Paulina Nawrocka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Klaudyna Sobkowiak
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Renata Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka, Jablonna, Poland
| | - Michal M Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Romuald Zabielski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| |
Collapse
|
8
|
Górka P, Sliwinski B, Flaga J, Olszewski J, Wojciechowski M, Krupa K, Godlewski MM, Zabielski R, Kowalski ZM. Effect of exogenous butyrate on the gastrointestinal tract of sheep. I. Structure and function of the rumen, omasum, and abomasum. J Anim Sci 2019; 96:5311-5324. [PMID: 30295810 DOI: 10.1093/jas/sky367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/03/2018] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to determine the effect of exogenous butyrate on the structure and selected functions of the stomach in sheep. Eighteen rams (30.8 ± 2.1 kg; 12 to 15 mo of age) were allocated to the study and fed a diet for 14 d without (CTRL) or with sodium butyrate (BUT; 36 g/kg of offered DM). Neither DMI nor initial BW differed between treatments (P ≥ 0.61), but final BW was greater for BUT compared with CTRL (P = 0.03). Butyrate concentration in the reticuloruminal fluid and abomasal digesta was greater for BUT compared with CTRL (P ≤ 0.01), but total short-chain fatty acids (SCFA) concentration, as well as concentration of other SCFA, did not differ between treatments (P ≥ 0.07). Relative to BW, reticuloruminal tissue mass tended (P = 0.09) to be greater and omasal digesta was less (P = 0.02) for BUT compared with CTRL. Dietary butyrate did not affect ruminal papillae length, width, and density nor did it affect ruminal epithelium thickness (P ≥ 0.12) in the ventral sac of the rumen. However, the DM of ruminal epithelium (mg/cm2) tended (P = 0.06) to be greater for BUT compared with CTRL. Omasal and abomasal epithelium thicknesses were greater (P ≤ 0.05) for BUT compared with CTRL. Mitosis-to-apoptosis ratio in the abomasal epithelium was less for BUT compared with CTRL (P = 0.04). Finally, the mRNA expression of peptide transporter 1 in the omasal epithelium was less (P = 0.02) and mRNA expression of monocarboxylate transporter 1 in the abomasal epithelium tended (P = 0.07) to be greater for BUT compared with CTRL. It can be concluded that exogenous butyrate supplementation affected not only the rumen but also omasum and abomasum in sheep.
Collapse
Affiliation(s)
- Pawel Górka
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Bogdan Sliwinski
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska, Balice, Poland
| | - Jadwiga Flaga
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Jaroslaw Olszewski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Marcin Wojciechowski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Klaudia Krupa
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| | - Michal M Godlewski
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Romuald Zabielski
- Department of Large Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, ul. Nowoursynowska, Warszawa, Poland
| | - Zygmunt M Kowalski
- Department of Animal Nutrition and Dietetics, University of Agriculture in Krakow, al. Mickiewicza, Krakow, Poland
| |
Collapse
|