1
|
Zupa R, Duncan N, Giménez I, Mylonas CC, Pousis C, Passantino L, Cuko R, Corriero A. Male germ cell proliferation and apoptosis in sexually immature meagre Argyrosomus regius (Asso, 1801) treated with recombinant follicle stimulating hormone. Sci Rep 2023; 13:7013. [PMID: 37117257 PMCID: PMC10147655 DOI: 10.1038/s41598-023-34102-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
The meagre Argyrosomus regius (Asso, 1801) is a marine fish species that has an increasing aquaculture production in Europe. Lowering the age at maturity of hatchery-produced juveniles would support meagre aquaculture by reducing time between generations in selective breeding programs and reducing industrial costs for broodstock maintenance. The aim of this work was to assess the effects of a treatment with recombinant follicle stimulating hormone (rFsh), produced in ovarian cells of Chinese hamsters, on male germ cell proliferation and apoptosis in sexually immature meagre. The rFsh-treated fish had higher gonadosomatic index, larger seminiferous tubules, more abundant luminal spermatozoa, a lower density of anti-PCNA positive single A spermatogonia, a higher density of anti-PCNA positive spermatocysts and a lower incidence of germ cell apoptosis than control groups. The present study demonstrated the effectiveness of the produced rFsh in stimulating testis development and spermatogenesis in pre-pubertal meagre. Moreover, the rFsh treatment proved to be highly efficient in removing the apoptotic block of spermatogenesis observed in juvenile meagre, allowing spermatogonial survival and progress towards meiosis. The administration of rFsh did not stimulate spermatogonial self-renewal, a process whose control still needs to be elucidated.
Collapse
Affiliation(s)
- Rosa Zupa
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Neil Duncan
- IRTA, Ctra. de Poble Nou km. 5.5, 43540, La Ràpita, Tarragona, Spain
| | - Ignacio Giménez
- Rara Avis Biotec, S. L., Calle Moratín 17, 46002, Valencia, Spain
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003, Heraklion, Crete, Greece
| | - Chrysovalentinos Pousis
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Letizia Passantino
- DiMePRe-J, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Rezart Cuko
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy
| | - Aldo Corriero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.P. per Casamassima km.3, 70010, Valenzano, Bari, Italy.
| |
Collapse
|
2
|
Song Y, Jiang Y, Chen J, Tao B, Xu W, Huang Y, Li G, Zhu C, Hu W. Effects of Secretoneurin and Gonadotropin-Releasing Hormone Agonist on the Spawning of Captive Greater Amberjack (Seriola dumerili). Life (Basel) 2022; 12:life12091457. [PMID: 36143493 PMCID: PMC9505948 DOI: 10.3390/life12091457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
The greater amberjack (Seriola dumerili), a pelagic marine species with a global distribution, has considerable worldwide potential as an aquaculture species. However, difficulties have been encountered in inducing spontaneous spawning in cultured fish stocks. In this study, we analysed the key regulatory factors, secretoneurin (SN) and gonadotropin-releasing hormone (GnRH), in greater amberjack. Active peptides of SN and GnRH, SdSNa, and SdGnRH, respectively, were obtained by comparative analysis of homologous proteins from different species. Amino acid substitutions of the SdGnRH decapeptide at position 6 with a dextrorotatory (D) amino acid and at position 10 with an ethylamide group yielded a super-active agonist (SdGnRHa). The injection of SdSNa and SdGnRHa elevated luteinizing hormone, thyroid-stimulating hormone, and oxytocin levels in the sera of sexually mature fish, whereas it reduced the level of follicle-stimulating hormone. Furthermore, in response to the SdSNa and SdGnRHa injections, we detected an increase in the expression of genes associated with oocyte development and spermatogenesis. We established that the greater amberjack cultured along the southern coast of China reached sexual maturity at three years of age, and its reproductive season extended from February to April. Spawning of the cultured greater amberjack was successfully induced with a single injection of SdGnRHa/SdSN/DOM/HCG. Our findings indicate that similar to GnRHa, SNa is a potential stimulator of reproduction that can be used to artificially induce spawning in marine fish.
Collapse
Affiliation(s)
- Yanlong Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yinjun Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Binbin Tao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
| | - Guangli Li
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
| | - Chunhua Zhu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Correspondence: (C.Z.); (W.H.)
| | - Wei Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524013, China
- Guangdong Laboratory for Lingnan Modem Agriculture, Guangzhou 510642, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence: (C.Z.); (W.H.)
| |
Collapse
|
3
|
Corriero A, Zupa R, Mylonas CC, Passantino L. Atresia of ovarian follicles in fishes, and implications and uses in aquaculture and fisheries. JOURNAL OF FISH DISEASES 2021; 44:1271-1291. [PMID: 34132409 PMCID: PMC8453499 DOI: 10.1111/jfd.13469] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/04/2023]
Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their associated somatic cells, is a complex process involving apoptosis, autophagy and heterophagy. Follicular atresia is a normal component of fish oogenesis and it is observed throughout the ovarian cycle, although it is more frequent in regressing ovaries during the postspawning period. An increased occurrence of follicular atresia above physiological rates reduces fish fecundity and even causes reproductive failure in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide range of implications in applied sciences such as fisheries and aquaculture. The present article reviews the available literature on both basic and applied traits of oocyte loss by atresia, including its morpho-physiological aspects and factors that cause a supraphysiological increase of follicular atresia. Finally, the review presents the use of early follicular atresia identification in the selection process of induced spawning in aquaculture and the implications of follicular atresia in fisheries management.
Collapse
Affiliation(s)
- Aldo Corriero
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Rosa Zupa
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Constantinos C. Mylonas
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center for Marine ResearchCreteGreece
| | - Letizia Passantino
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| |
Collapse
|
4
|
Meagre Argyrosomus regius (Asso, 1801) Stem Spermatogonia: Histological Characterization, Immunostaining, In Vitro Proliferation, and Cryopreservation. Animals (Basel) 2020; 10:ani10050851. [PMID: 32423131 PMCID: PMC7278407 DOI: 10.3390/ani10050851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/01/2023] Open
Abstract
The meagre, Argyrosomus regius, is a valued fish species of which aquaculture production might be supported by the development of a stem germ cell xenotransplantation technology. Meagre males were sampled at a fish farm in the Ionian Sea (Italy) at the beginning and end of the reproductive season. Small and large Type A undifferentiated spermatogonia were histologically identified in the germinal epithelium. Among the tested stemness markers, anti-oct4 and anti-vasa antibodies labeled cells likely corresponding to the small single Type A spermatogonia; no labeling was obtained with anti-GFRA1 and anti-Nanos2 antibodies. Two types of single A spermatogonia were purified via density gradient centrifugation of enzymatically digested testes. Testes from fish in active spermatogenesis resulted in a more efficient spermatogonial stem cell (SSC) yield. After cell seeding, meagre SSCs showed active proliferation from Day 7 to Day 21 and were cultured up to Day 41. After cryopreservation in dimethyl-sulfoxide-based medium, cell viability was 28.5%. In conclusion, these results indicated that meagre SSCs could be isolated, characterized, cultured in vitro, successfully cryopreserved, and used after thawing. This is a first step towards the development of a xenotransplantation technology that might facilitate the reproduction of this valuable species in captivity.
Collapse
|
5
|
Passantino L, Zupa R, Pousis C, Mylonas CC, Hala E, Jirillo E, Corriero A. Increased melanomacrophage centres in the liver of reproductively dysfunctional female greater amberjack Seriola dumerili (Risso, 1810). JOURNAL OF FISH DISEASES 2020; 43:503-514. [PMID: 32103518 DOI: 10.1111/jfd.13149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
The greater amberjack Seriola dumerili is a new aquaculture fish that may display reproductive dysfunctions. During extensive follicular atresia, which is a common reproductive dysfunction in females during vitellogenesis, part of the reabsorbed yolk returns to the liver to be metabolized and recycled. Melanomacrophage centres (MMCs) are aggregates of macrophage-like cells that play a role in the destruction, detoxification and recycling of endogenous and exogenous materials, and have been associated with systemic stress. Wild and captive-reared greater amberjack were sampled in the Mediterranean Sea during two different phases of the reproductive cycle. The liver of reproductively dysfunctional captive-reared females sampled during the spawning season showed a high density of both MMCs and apoptotic cells. A weak liver anti-cytochrome P450 monooxygenase 1A immunoreactivity was observed, suggesting that the examined fish were not exposed to environmental pollutants. We propose that the observed increase in MMCs and apoptosis in captive-reared fish was related to the hepatic overload associated to the metabolism of yolk proteins reabsorbed during extensive follicular atresia. Since follicular atresia is a frequent physiological and pathological event in teleosts, we suggest that the reproductive state should be always assessed when MMCs are used as markers of exposure to stress or pollutants.
Collapse
Affiliation(s)
- Letizia Passantino
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Rosa Zupa
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| | - Chrysovalentinos Pousis
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Constantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Heraklion, Greece
| | - Edmond Hala
- Department of Aquaculture and Fisheries, Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Aldo Moro, Bari, Italy
| | - Aldo Corriero
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
6
|
Hinkson KM, Poo S. Inbreeding depression in sperm quality in a critically endangered amphibian. Zoo Biol 2020; 39:197-204. [DOI: 10.1002/zoo.21538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/07/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kristin M. Hinkson
- Memphis Zoo, Department of Conservation and ResearchMemphis Zoological SocietyMemphis Tennessee
| | - Sinlan Poo
- Memphis Zoo, Department of Conservation and ResearchMemphis Zoological SocietyMemphis Tennessee
| |
Collapse
|
7
|
Poo S, Hinkson KM. Applying cryopreservation to anuran conservation biology. CONSERVATION SCIENCE AND PRACTICE 2019. [DOI: 10.1111/csp2.91] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Sinlan Poo
- Department of Research and Conservation, Memphis Zoological Society Memphis Tennessee
| | - Kristin M. Hinkson
- Department of Research and Conservation, Memphis Zoological Society Memphis Tennessee
| |
Collapse
|
8
|
Spawning Induction of First-Generation (F1) Greater Amberjack Seriola dumerili in the Canary Islands, Spain Using GnRHa Delivery Systems. FISHES 2018. [DOI: 10.3390/fishes3030035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of a sustainable aquaculture industry requires the closing of the life-cycle of a potential species in captivity, and the establishment of breeding selection programs using hatchery-produced breeding stocks. The greater amberjack Seriola dumerili is a cosmopolitan pelagic species that has been considered as a good candidate for the species diversification of aquaculture production in the Mediterranean region. However, commercial production is still very limited due to bottlenecks in reproduction, larval rearing and management control during grow out. The aim of the present study was to examine the reproductive development of hatchery-produced greater amberjack and to develop a spawning induction protocol based on the use of gonadotropin releasing hormone agonist (GnRHa) in a controlled-release delivery system. The results showed that hatchery-produced greater amberjack undergo normal gametogenesis and can be induced to undergo maturation, ovulation and spawning after multiple administrations of GnRHa implants, over an extended spawning period lasting from May to September in the Canary Islands, Spain. The use of GnRHa-delivery systems resulted in multiple spawns of fertilized and viable eggs. Egg production was high and egg quality adequate for the implementation of larval rearing for commercial purposes. The handling required to administer the GnRHa implants during the prolonged spawning season did not result in any negative effect on the welfare and reproductive performance of the fish based on evaluation of several biochemical parameters. The developed reproduction control method shows great potential to advance the commercial production of greater amberjack, by enabling the use of hatchery-produced broodstocks for further breeding selection.
Collapse
|