1
|
Arriola KG, Oliveira AS, Jiang Y, Kim D, Silva HM, Kim SC, Amaro FX, Ogunade IM, Sultana H, Pech Cervantes AA, Ferraretto LF, Vyas D, Adesogan AT. Meta-analysis of effects of inoculation with Lactobacillus buchneri, with or without other bacteria, on silage fermentation, aerobic stability, and performance of dairy cows. J Dairy Sci 2021; 104:7653-7670. [PMID: 33814134 DOI: 10.3168/jds.2020-19647] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/16/2021] [Indexed: 01/22/2023]
Abstract
A meta-analysis of 158 peer-reviewed articles was conducted to examine effects of inoculation with Lactobacillus buchneri (LB)-based inoculants (LBB) that did or did not include homolactic or obligate heterolactic bacteria on silage fermentation and aerobic stability. A complementary meta-analysis of 12 articles examined LBB inoculation effects on dairy cow performance. Raw mean differences between inoculant and control treatment means weighted by inverse variance were compared with a hierarchical effects model that included robust variance estimation. Meta-regression and subgrouping analysis were used to identify effects of covariates including forage type, application rate (≤104, 105, 106, or ≥ 107 cfu/g as fed), bacteria type (LB vs. LB plus other bacteria), enzyme inclusion, ensiling duration, and silo type (laboratory or farm scale). Inoculation with LBB increased acetate (62%), 1, 2 propanediol (364%) and propionate (30%) concentration and aerobic stability (73.8%) and reduced lactate concentration (7.2%), yeast counts (7-fold) and mold counts (3-fold). Feeding inoculated silage did not affect milk yield, dry matter intake, and feed efficiency in lactating dairy cows. However, forage type, inoculant composition, and dose effects on silage quality measures were evident. Inoculation with LBB increased aerobic stability of all silages except tropical grasses. Adding obligate homolactic or facultative heterolactic bacteria to LB prevented the small increase in DM losses caused by LB alone. The 105 and 106 cfu/g rates were most effective at minimizing DM losses while aerobic stability was only increased with 105, 106, and ≥ 107 cfu/g rates. Inoculation with LBB increased acetate concentration, reduced yeast counts and improved aerobic stability but did not improve dairy cow performance.
Collapse
Affiliation(s)
- Kathy G Arriola
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - André S Oliveira
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT 78557-267, Brazil
| | - Yun Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Donghyeon Kim
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Henrique M Silva
- Dairy Cattle Research Laboratory, Universidade Federal de Mato Grosso, Campus Sinop, Sinop, MT 78557-267, Brazil
| | - Sam Churl Kim
- Division of Applied Life Science (BK21plus, Institute of Agriculture and Life Sciences), Gyeongsang National University, 52828 South Korea
| | - Felipe X Amaro
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Ibukun M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Halima Sultana
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Andres A Pech Cervantes
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Luiz F Ferraretto
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Diwakar Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611
| | - Adegbola T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611.
| |
Collapse
|
2
|
da Silva EB, Smith ML, Savage RM, Polukis SA, Drouin P, Kung L. Effects of Lactobacillus hilgardii 4785 and Lactobacillus buchneri 40788 on the bacterial community, fermentation and aerobic stability of high-moisture corn silage. J Appl Microbiol 2020; 130:1481-1493. [PMID: 33040472 DOI: 10.1111/jam.14892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the capacity of Lactobacillus hilgardii and Lactobacillus buchneri on modifying the bacterial community and improving fermentation and aerobic stability of high-moisture corn (HMC). METHODS AND RESULTS High-moisture corn was untreated (CTR), treated with L. hilgardii (LH) or L. buchneri (LB) at 600 000 CFU per gram fresh weight, or with L. hilgardii and L. buchneri at 300 000 CFU per gram fresh weight each (LHLB), and stored for 10, 30 or 92 days. Compared to CTR, inoculated silages had higher Lactobacillaceae relative abundance, lower yeasts numbers and higher aerobic stability. Treatment with LHLB resulted in a higher acetic acid concentration than LH and higher 1,2 propanediol concentration than LB, such differences were numerically greater at 10 and 30 days but statistically greater at 92 days. At 10 days, all inoculated silages were more stable than CTR, but LHLB was even more stable than LB or LH. CONCLUSIONS The combination of L. hilgardii and L. buchneri had a synergistic effect on yeast inhibition, leading to greater improvements in aerobic stability as early as 10 days after ensiling. SIGNIFICANCE AND IMPACT OF THE STUDY Lactobacillus hilgardii, especially in combination with L. buchneri, can improve the aerobic stability of HMC after a very short period of ensiling.
Collapse
Affiliation(s)
- E B da Silva
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, USA
| | - M L Smith
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, USA
| | - R M Savage
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, USA
| | - S A Polukis
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, USA
| | - P Drouin
- Lallemand Specialties Inc, Milwaukee, WI, USA
| | - L Kung
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE, USA
| |
Collapse
|
3
|
Carvalho BF, Sales GFC, Schwan RF, Ávila CLS. Criteria for lactic acid bacteria screening to enhance silage quality. J Appl Microbiol 2020; 130:341-355. [PMID: 32869919 DOI: 10.1111/jam.14833] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022]
Abstract
The main challenge of ensiling is conserving the feed through a fermentative process that results in high nutritional and microbiological quality while minimizing fermentative losses. This challenge is of growing interest to farmers, industry and research and involves the use of additives to improve the fermentation process and preserve the ensiled material. Most studies involved microbial additives; lactic acid bacteria (LAB) have been the focus of much research and have been widely used. Currently, LABs are used in modern and sustainable agriculture because of their considerable potential for enhancing human and animal health. Although the number of studies evaluating LABs in silages has increased, the potential use of these micro-organisms in association with silage has not been adequately studied. Fermentation processes using the same strain produce very different results depending on the unique characteristics of the substrate, so the choice of silage inoculant for different starting substrates is of extreme importance to maximize the nutritional quality of the final product. This review describes the current scenario of the bioprospecting and selection process for choosing the best LAB strain as an inoculant for ensiling. In addition, we analyse developments in the fermentation process and strategies and methods that will assist future studies on the selection of new strains of LAB as a starter culture or inoculant.
Collapse
Affiliation(s)
- B F Carvalho
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - G F C Sales
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - R F Schwan
- Department of Biology, Federal University of Lavras, Lavras, MG, Brazil
| | - C L S Ávila
- Department of Animal Science, Federal University of Lavras, Lavras, MG, Brazil
| |
Collapse
|
4
|
Xu D, Wang N, Rinne M, Ke W, Weinberg ZG, Da M, Bai J, Zhang Y, Li F, Guo X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb Biotechnol 2020; 14:561-576. [PMID: 32627363 PMCID: PMC7936295 DOI: 10.1111/1751-7915.13623] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/11/2020] [Accepted: 06/11/2020] [Indexed: 01/14/2023] Open
Abstract
Multi‐omics approach was adopted to investigate the modulation of bacterial microbiota and metabolome as well as their interactions in whole crop corn ensiling systems by inoculating homofermentative Lactobacillus plantarum or heterofermentative Lactobacillus buchneri. Inoculations of the two different inoculants resulted in substantial differences in microbial community and metabolic composition as well as their dynamics in ensiled corn. Inoculants also altered the correlations of microbiota in different manners, and various keystone species were identified in corn silages with different treatments. Many metabolites with biofunctional activities like bacteriostatic, antioxidant, central nervous system inhibitory and anti‐inflammatory were found in the present silage. A constitutive difference in microbiota dynamics was found for several pathways, which were upregulated by specific taxa in middle stage of fermentation, and widespread associations between metabolites with biofunctions and the species of lactic acid bacteria dominated in silage were observed. Multiple microbial and metabolic structures and dynamics were correlated and affected the fermentation process of the corn ensiling systems. Results of the current study improve our understanding of the complicated biological process underlying silage fermentation and provide a framework to re‐evaluate silages with biofunctions, which may contribute to target‐based regulation methods to produce functional silage for animal production.
Collapse
Affiliation(s)
- Dongmei Xu
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Nian Wang
- Nextomics Biosciences Institute, Wuhan, 430000, China
| | - Marketta Rinne
- Natural Resources Institute Finland (Luke) Animale, Jokioinen, 31600, Finland
| | - Wencan Ke
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Zwika G Weinberg
- Microbial Food-Safety Research Unit, Department of Food Quality and Safety, The Volcani Center, Agriculture Research Organization, Institute for Postharvest and Food Sciences, Derech HaMaccabim Road 68, POB 15159, Rishon-LeZion, 7528809, Israel
| | - Mi Da
- Nextomics Biosciences Institute, Wuhan, 430000, China
| | - Jie Bai
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Fuhou Li
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Guo L, Yao D, Li D, Lin Y, Bureenok S, Ni K, Yang F. Effects of Lactic Acid Bacteria Isolated From Rumen Fluid and Feces of Dairy Cows on Fermentation Quality, Microbial Community, and in vitro Digestibility of Alfalfa Silage. Front Microbiol 2020; 10:2998. [PMID: 31998275 PMCID: PMC6962301 DOI: 10.3389/fmicb.2019.02998] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to select lactic acid bacteria (LAB) isolated from the rumen fluid and feces of dairy cows, and evaluate their effects on silage quality of alfalfa after 30 or 60 days of ensiling. One hundred and four LAB strains were isolated from rumen fluid and feces of six dairy cows, of which four strains (Lactobacillus plantarum F1, L. plantarum F50, Lactobacillus salivarius L100, and Lactobacillus fermentum L120) and one commercial inoculant (GFG) isolated from forage were employed for further study. The silages treated with F1 had the lowest (P < 0.05) pH value and the highest (P < 0.05) lactic acid (LA) content in all treatments. Besides, higher (P < 0.05) in vitro digestibility was also observed in F1-treated silage after 60 days of ensiling. The microbial analysis showed that the Lactobacillus abundance in the F1-treated silages increased to 60.32%, higher than other treatments (5.12–47.64%). Our research indicated that strain F1 could be an alternative silage inoculant, and dairy cows could be a source for obtaining excellent LAB for ensiling.
Collapse
Affiliation(s)
- Linna Guo
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Yao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Dongxia Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yanli Lin
- Beijing Sure Academy of Biosciences, Beijing, China
| | - Smerjai Bureenok
- Department of Agricultural Technology and Environment, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Drouin P, Tremblay J, Chaucheyras-Durand F. Dynamic Succession of Microbiota during Ensiling of Whole Plant Corn Following Inoculation with Lactobacillus buchneri and Lactobacillus hilgardii Alone or in Combination. Microorganisms 2019; 7:microorganisms7120595. [PMID: 31766494 PMCID: PMC6955939 DOI: 10.3390/microorganisms7120595] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/19/2023] Open
Abstract
Lactic acid bacteria (LAB) used as silage additives have been shown to improve several fermentation parameters, including aerobic stability. Inoculation with a combination of Lactobacillus buchneri NCIMB40788 and Lactobacillus hilgardii CNCM-I-4785, contributes to an increase in aerobic stability, compared to each strain inoculated independently. To understand the mode of action of the combination on the LAB community, a fermentation-kinetic study was performed on corn. Four treatments, Control, Lb. buchneri,Lb. hilgardii, and a combination of the two strains, were fermented 1, 2, 4, 8, 16, 32, and 64 days. Corn silage inoculated by both strains had a lactate:acetate ratio of 0.59 after 64 days and a higher concentration of lactate than Lb. buchneri. Analysis of the microbiota by 16S and ITS amplicon metasequencing demonstrated that inoculation led to lower bacterial diversity after 1 day, from 129.4 down to 40.7 observed operational taxonomic units (OTUs). Leuconostocaceae represented the dominant population by day 1, with 48.1%. Lactobacillaceae dominated the succession by day 4, with 21.9%. After 32 days, inoculation by both strains had the lowest bacterial alpha diversity level, with 29.0 observed OTUs, compared to 61.3 for the Control. These results confirm the increased fermentation efficiency when the two Lactobacillus strains are co-inoculated, which also led to a specific yeast OTUs diversity profile, with Hannaella as the main OTU.
Collapse
Affiliation(s)
- Pascal Drouin
- Lallemand Specialities Inc., Milwaukkee, WI 53218, USA
- Correspondence: ; Tel.: +1-518-538-2165
| | - Julien Tremblay
- Energy, Mining and Environment Research Centre, National Research Council of Canada, Montréal, QC H4P 2R2, Canada;
| | - Frédérique Chaucheyras-Durand
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac CEDEX, France;
- Unité Mixte de Recherche 454 Microbiologie Environnement Digestif et Santé, Institut National de la Recherche Agronomique, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Santos W, Salvati G, Arthur B, Daniel J, Nussio L. The effect of sodium benzoate on the nutritive value of rehydrated sorghum grain silage for dairy cows. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2019.114267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Cameron A, McAllister TA. Could probiotics be the panacea alternative to the use of antimicrobials in livestock diets? Benef Microbes 2019; 10:773-799. [PMID: 31965849 DOI: 10.3920/bm2019.0059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Probiotics are most frequently derived from the natural microbiota of healthy animals. These bacteria and their metabolic products are viewed as nutritional tools for promoting animal health and productivity, disease prevention and therapy, and food safety in an era defined by increasingly widespread antimicrobial resistance in bacterial pathogens. In contemporary livestock production, antimicrobial usage is indispensable for animal welfare, and employed to enhance growth and feed efficiency. Given the importance of antimicrobials in both human and veterinary medicine, their effective replacement with direct-fed microbials or probiotics could help reduce antimicrobial use, perhaps restoring or extending the usefulness of these precious drugs against serious infections. Thus, probiotic research in livestock is rapidly evolving, aspiring to produce local and systemic health benefits on par with antimicrobials. Although many studies have clearly demonstrated the potential of probiotics to positively affect animal health and inhibit pathogens, experimental evidence suggests that probiotics' successes are modest, conditional, strain-dependent, and transient. Here, we explore current understanding, trends, and emerging applications of probiotic research and usage in major livestock species, and highlight successes in animal health and performance.
Collapse
Affiliation(s)
- A Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.,Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| | - T A McAllister
- Agriculture and Agri-Food Canada, 5403 1st Ave South, Lethbridge, AB T1J 4P4, Canada
| |
Collapse
|
10
|
Andreazzi AS, Pereira MN, Reis RB, Pereira RA, Morais Júnior NN, Acedo TS, Hermes RG, Cortinhas CS. Effect of exogenous amylase on lactation performance of dairy cows fed a high-starch diet. J Dairy Sci 2018; 101:7199-7207. [DOI: 10.3168/jds.2017-14331] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/28/2018] [Indexed: 11/19/2022]
|