1
|
Sumi TA, Nath T, Nahar N, Hossain MS, Andersson K. Classifying Brain Tumor from MRI Images Using Parallel CNN Model. Brain Inform 2022. [DOI: 10.1007/978-3-031-15037-1_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
2
|
Jiang F, Elahi B, Saxena M, Telkes I, DiMarzio M, Pilitsis JG, Golestanirad L. Patient-specific modeling of the volume of tissue activated (VTA) is associated with clinical outcome of DBS in patients with an obsessive-compulsive disorder. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5889-5892. [PMID: 34892459 PMCID: PMC10829536 DOI: 10.1109/embc46164.2021.9630273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep brain stimulation (DBS) promises to treat an increasing number of neurological and psychiatric disorders. DBS outcome is directly a factor of optimal targeting of the relevant brain structures. Computational models can help to interpret a patient's outcome by predicting the volume of tissue activated (VTA) around DBS electrode contacts. Here we report results of a preliminary study of DBS in two patients with obsessive-compulsive disorder and show that VTA predictions, which are based on patient-specific volume conductor models, correlate with clinical outcome. Our results suggest that patient specific VTA calculation can help inform device programing to maximize therapeutic effects and minimize side effects.Clinical Relevance- Patient-specific modeling of the volume of activated tissue can predict clinical outcomes and thus, can help to optimize DBS device programing to maximize therapeutic effects.
Collapse
|
3
|
Jiang F, Nguyen BT, Elahi B, Pilitsis J, Golestanirad L. Effect of Biophysical Model Complexity on Predictions of Volume of Tissue Activated (VTA) during Deep Brain Stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3629-3633. [PMID: 33018788 PMCID: PMC10883758 DOI: 10.1109/embc44109.2020.9175300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep brain stimulation (DBS) has evolved to an important treatment for several drug-resistant neurological and psychiatric disorders, such as epilepsy, Parkinson's disease, essential tremor and dystonia. Despite general effectiveness of DBS, however, its mechanisms of action are not completely understood. Simulations are commonly used to predict the volume of tissue activated (VTA) around DBS electrodes, which in turn helps interpreting clinical outcomes and understand therapeutic mechanisms. Computational models are commonly used to visualize the extend of volume of activated tissue (VTA) for different stimulation schemes, which in turn helps interpreting and understanding the outcomes. The degree of model complexity, however, can affect the predicted VTA. In this work we investigate the effect of volume conductor model complexity on the predicted VTA, when the VTA is estimated from activation function field metrics. Our results can help clinicians to decide what level of model complexity is suitable for their specific need.
Collapse
|
4
|
Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories. Neuroimage 2019; 199:18-29. [PMID: 31096058 DOI: 10.1016/j.neuroimage.2019.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022] Open
Abstract
Patients with deep brain stimulation devices highly benefit from postoperative MRI exams, however MRI is not readily accessible to these patients due to safety risks associated with RF heating of the implants. Recently we introduced a patient-adjustable reconfigurable coil technology that substantially reduced local SAR at tips of single isolated DBS leads during MRI at 1.5 T in 9 realistic patient models. This contribution extends our work to higher fields by demonstrating the feasibility of scaling the technology to 3T and assessing its performance in patients with bilateral leads as well as fully implanted systems. We developed patient-derived models of bilateral DBS leads and fully implanted DBS systems from postoperative CT images of 13 patients and performed finite element simulations to calculate SAR amplification at electrode contacts during MRI with a reconfigurable rotating coil at 3T. Compared to a conventional quadrature body coil, the reconfigurable coil system reduced the SAR on average by 83% for unilateral leads and by 59% for bilateral leads. A simple surgical modification in trajectory of implanted leads was demonstrated to increase the SAR reduction efficiency of the rotating coil to >90% in a patient with a fully implanted bilateral DBS system. Thermal analysis of temperature-rise around electrode contacts during typical brain exams showed a 15-fold heating reduction using the rotating coil, generating <1°C temperature rise during ∼4-min imaging with high-SAR sequences where a conventional CP coil generated >10°C temperature rise in the tissue for the same flip angle.
Collapse
|
5
|
Golestanirad L, Angelone LM, Kirsch J, Downs S, Keil B, Bonmassar G, Wald LL. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1265-1273. [PMID: 31607756 PMCID: PMC6788634 DOI: 10.1109/tmtt.2018.2885517] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
Collapse
Affiliation(s)
- Laleh Golestanirad
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, MA 02129 USA, and the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Device and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| |
Collapse
|
6
|
RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management. Neuroimage 2018; 184:566-576. [PMID: 30243973 DOI: 10.1016/j.neuroimage.2018.09.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022] Open
Abstract
Access to MRI is limited for patients with deep brain stimulation (DBS) implants due to safety hazards, including radiofrequency (RF) heating of tissue surrounding the leads. Computational models provide an exquisite tool to explore the multi-variate problem of RF heating and help better understand the interaction of electromagnetic fields and biological tissues. This paper presents a computational approach to assess RF-induced heating, in terms of specific absorption rate (SAR) in the tissue, around the tip of bilateral DBS leads during MRI at 64MHz/1.5 T and 127 MHz/3T. Patient-specific realistic lead models were constructed from post-operative CT images of nine patients operated for sub-thalamic nucleus DBS. Finite element method was applied to calculate the SAR at the tip of left and right DBS contact electrodes. Both transmit head coils and transmit body coils were analyzed. We found a substantial difference between the SAR and temperature rise at the tip of right and left DBS leads, with the lead contralateral to the implanted pulse generator (IPG) exhibiting up to 7 times higher SAR in simulations, and up to 10 times higher temperature rise during measurements. The orientation of incident electric field with respect to lead trajectories was explored and a metric to predict local SAR amplification was introduced. Modification of the lead trajectory was shown to substantially reduce the heating in phantom experiments using both conductive wires and commercially available DBS leads. Finally, the surgical feasibility of implementing the modified trajectories was demonstrated in a patient operated for bilateral DBS.
Collapse
|
7
|
Golestanirad L, Gale JT, Manzoor NF, Park HJ, Glait L, Haer F, Kaltenbach JA, Bonmassar G. Solenoidal Micromagnetic Stimulation Enables Activation of Axons With Specific Orientation. Front Physiol 2018; 9:724. [PMID: 30140230 PMCID: PMC6094965 DOI: 10.3389/fphys.2018.00724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/24/2018] [Indexed: 01/28/2023] Open
Abstract
Electrical stimulation of the central and peripheral nervous systems - such as deep brain stimulation, spinal cord stimulation, and epidural cortical stimulation are common therapeutic options increasingly used to treat a large variety of neurological and psychiatric conditions. Despite their remarkable success, there are limitations which if overcome, could enhance outcomes and potentially reduce common side-effects. Micromagnetic stimulation (μMS) was introduced to address some of these limitations. One of the most remarkable properties is that μMS is theoretically capable of activating neurons with specific axonal orientations. Here, we used computational electromagnetic models of the μMS coils adjacent to neuronal tissue combined with axon cable models to investigate μMS orientation-specific properties. We found a 20-fold reduction in the stimulation threshold of the preferred axonal orientation compared to the orthogonal direction. We also studied the directional specificity of μMS coils by recording the responses evoked in the inferior colliculus of rodents when a pulsed magnetic stimulus was applied to the surface of the dorsal cochlear nucleus. The results confirmed that the neuronal responses were highly sensitive to changes in the μMS coil orientation. Accordingly, our results suggest that μMS has the potential of stimulating target nuclei in the brain without affecting the surrounding white matter tracts.
Collapse
Affiliation(s)
- Laleh Golestanirad
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - John T Gale
- Department of Neurosurgery, Emory University, Atlanta, GA, United States
| | - Nauman F Manzoor
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | - Hyun-Joo Park
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Lyall Glait
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States.,Ear, Nose and Throat Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| | | | - James A Kaltenbach
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Fiechter M, Nowacki A, Oertel MF, Fichtner J, Debove I, Lachenmayer ML, Wiest R, Bassetti CL, Raabe A, Kaelin-Lang A, Schüpbach MW, Pollo C. Deep Brain Stimulation for Tremor: Is There a Common Structure? Stereotact Funct Neurosurg 2017; 95:243-250. [DOI: 10.1159/000478270] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 06/08/2017] [Indexed: 12/19/2022]
|
9
|
Howell B, McIntyre CC. Role of Soft-Tissue Heterogeneity in Computational Models of Deep Brain Stimulation. Brain Stimul 2016; 10:46-50. [PMID: 27720186 DOI: 10.1016/j.brs.2016.09.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/29/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bioelectric field models of deep brain stimulation (DBS) are commonly utilized in research and industrial applications. However, the wide range of different representations used for the human head in these models may be responsible for substantial variance in the stimulation predictions. OBJECTIVE Determine the relative error of ignoring cerebral vasculature and soft-tissue heterogeneity outside of the brain in computational models of DBS. METHODS We used a detailed atlas of the human head, coupled to magnetic resonance imaging data, to construct a range of subthalamic DBS volume conductor models. We incrementally simplified the most detailed base model and quantified changes in the stimulation thresholds for direct activation of corticofugal axons. RESULTS Ignoring cerebral vasculature altered predictions of stimulation thresholds by <10%, whereas ignoring soft-tissue heterogeneity outside of the brain altered predictions between -44 % and 174%. CONCLUSIONS Heterogeneity in the soft tissues of the head, if unaccounted for, introduces a degree of uncertainty in predicting electrical stimulation of neural elements that is not negligible and thereby warrants consideration in future modeling studies.
Collapse
Affiliation(s)
- Bryan Howell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Golestanirad L, Pollo C, Graham SJ. Analysis of fractal electrodes for efficient neural stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2014; 2013:791-4. [PMID: 24109806 DOI: 10.1109/embc.2013.6609619] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar electrodes are increasingly used in a variety of neural stimulation techniques such as epidural spinal cord stimulation, epidural cortical stimulation, transcranial direct current stimulation and functional electric stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by maximizing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to increase the neural activation function and enhance the efficiency of neural stimulation. It is hypothesized that the key factor in increasing the activation function in the tissue adjacent to the electrode is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute the distribution of electric potential produced by proposed geometries, demonstrating that the neural activation function was significantly enhanced in the tissue. The activation of 800 model axons positioned around the electrodes was also quantified, showing that modified fractal geometries yielded a 22% reduction in input power consumption while maintaining the same level of neural activation. The results demonstrate the feasibility of increasing stimulation efficiency using modified fractal geometries beyond the levels already reported in the literature.
Collapse
|
11
|
Golestanirad L, Rouhani H, Elahi B, Shahim K, Chen R, Mosig JR, Pollo C, Graham SJ. Combined use of transcranial magnetic stimulation and metal electrode implants: a theoretical assessment of safety considerations. Phys Med Biol 2012; 57:7813-27. [DOI: 10.1088/0031-9155/57/23/7813] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|