1
|
Bousnaki M, Bakopoulou A, Papadogianni D, Barkoula NM, Alpantaki K, Kritis A, Chatzinikolaidou M, Koidis P. Fibro/chondrogenic differentiation of dental stem cells into chitosan/alginate scaffolds towards temporomandibular joint disc regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:97. [PMID: 29946796 DOI: 10.1007/s10856-018-6109-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Tissue engineering (TE) may provide effective alternative treatment for challenging temporomandibular joint (TMJ) pathologies associated with disc malpositioning or degeneration and leading to severe masticatory dysfunction. Aim of this study was to evaluate the potential of chitosan/alginate (Ch/Alg) scaffolds to promote fibro/chondrogenic differentiation of dental pulp stem cells (DPSCs) and production of fibrocartilage tissue, serving as a replacement of the natural TMJ disc. Ch/Alg scaffolds were fabricated by crosslinking with CaCl2 combined or not with glutaraldehyde, resulting in two scaffold types that were physicochemically characterized, seeded with DPSCs or human nucleus pulposus cells (hNPCs) used as control and evaluated for cell attachment, viability, and proliferation. The DPSCs/scaffold constructs were incubated for up to 8 weeks and assessed for extracellular matrix production by means of histology, immunofluorescence, and thermomechanical analysis. Both Ch/Alg scaffold types with a mass ratio of 1:1 presented a gel-like structure with interconnected pores. Scaffolds supported cell adhesion and long-term viability/proliferation of DPSCs and hNPCs. DPSCs cultured into Ch/Alg scaffolds demonstrated a significant increase of gene expression of fibrocartilaginous markers (COLI, COL X, SOX9, COM, ACAN) after up to 3 weeks in culture. Dynamic thermomechanical analysis revealed that scaffolds loaded with DPSCs significantly increased storage modulus and elastic response compared to cell-free scaffolds, obtaining values similar to those of native TMJ disc. Histological data and immunochemical staining for aggrecan after 4 to 8 weeks indicated that the scaffolds support abundant fibrocartilaginous tissue formation, thus providing a promising strategy for TMJ disc TE-based replacement.
Collapse
Affiliation(s)
- Maria Bousnaki
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece
| | - Danai Papadogianni
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Nektaria-Marianthi Barkoula
- Department of Materials Science and Engineering, University of Ioannina, University Campus, 45500, Ioannina, Greece
| | - Kalliopi Alpantaki
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Aristidis Kritis
- Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus, 54006, Thessaloniki, Greece
- cGMP Regenerative Medicine facility, Department of Physiology and Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, 54006, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, Vassilika Vouton, Heraklion, 70013, Crete, Greece
| | - Petros Koidis
- Department of Prosthodontics, Faculty of Dentistry, Aristotle University of Thessaloniki, University Campus, Dentistry Building, 54124, Thessaloniki, Greece.
| |
Collapse
|
2
|
Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y, Chen Y. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell Tissue Res 2014; 355:345-54. [PMID: 24248941 PMCID: PMC3945842 DOI: 10.1007/s00441-013-1743-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022]
Abstract
The temporomandibular joint (TMJ) consists in the glenoid fossa arising from the otic capsule through intramembranous ossification, the fibrocartilaginous disc and the condyle, which is derived from the secondary cartilage by endochondral ossification. We have reported previously that cranial neural-crest-specific inactivation of the homeobox gene Shox2, which is expressed in the mesenchymal cells of the maxilla-mandibular junction and later in the progenitor cells and perichondrium of the developing chondyle, leads to dysplasia and ankylosis of the TMJ and that replacement of the mouse Shox2 with the human SHOX gene rescues the dysplastic and ankylosis phenotypes but results in a prematurely worn out articular disc. In this study, we investigate the molecular and cellular bases for the prematurely worn out articular disc in the TMJ of mice carrying the human SHOX replacement allele in the Shox2 locus (termed Shox2 (SHOX-KI/KI)). We find that the developmental process and expression of several key genes in the TMJ of Shox2 (SHOX-KI/KI) mice are similar to that of controls. However, the disc of the Shox2 (SHOX-KI/KI) TMJ exhibits a reduced level of Collagen I and Aggrecan, accompanied by increased activities of matrix metalloproteinases and a down-regulation of Ihh expression. Dramatically increased cell apoptosis in the disc was also observed. These combinatory cellular and molecular defects appear to contribute to the observed disc phenotype, suggesting that, although human SHOX can exert similar functions to mouse Shox2 in regulating early TMJ development, it apparently has a distinct function in the regulation of those molecules that are involved in tissue homeostasis.
Collapse
Affiliation(s)
- Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Hongbing Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Shuping Gu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Cheng Sun
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
3
|
de Moraes LOC, Lodi FR, Gomes TS, Marques SR, Oshima CTF, Lancellotti CLP, Rodríguez-Vázquez JF, Mérida-Velasco JR, Alonso LG. Immunohistochemical expression of types I and III collagen antibodies in the temporomandibular joint disc of human foetuses. Eur J Histochem 2011; 55:e24. [PMID: 22073371 PMCID: PMC3203475 DOI: 10.4081/ejh.2011.e24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 05/24/2011] [Indexed: 11/22/2022] Open
Abstract
The objective was to study the morphology of the articular disc and analyse the immunohistochemical expression of types I and III collagen markers in the temporomandibular joint (TMJ) disc of human foetuses of different gestational ages. Twenty TMJ from human foetuses supplied by Universidade Federal de Uberaba with gestational ages from 17 to 24 weeks were studied. The gestational age of the foetuses was determined by measuring the crown-rump (CR) length. Macroscopically, the foetuses were fixed in 10% formalin solution and dissected by removing the skin and subcutaneous tissue and exposing the deep structures. Immunohistochemical markers of type I and III were used to characterize the existence of collagen fibres. Analysis of the immunohistochemical markers of types I and III collagen revealed the presence of heterotypical fibril networks.
Collapse
Affiliation(s)
- L O C de Moraes
- Departamento de Morfologia e Genética, Universidade Federal de São Paulo, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Leonardi R, Michelotti A, Farella M, Caltabiano R, Lanzafame S. Fibronectin Upregulation in Human Temporomandibular Joint Disks With Internal Derangement. J Craniofac Surg 2004; 15:678-83; discussion 684-5. [PMID: 15213552 DOI: 10.1097/00001665-200407000-00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibronectin is a large fibril-forming extracellular glycoprotein that seems to be involved in joint diseases. The objective of this study was to investigate the expression of fibronectin in human temporomandibular joint disks obtained from patients with internal derangement and varying extents of disk tissue degeneration/regeneration with that of temporomandibular joint disks free of significant morphological alterations by means of immunohistochemical methods. Twelve adult human temporomandibular joint disks (10 diseased disks and 2 normal disks) were used in this study. Temporomandibular joint disks were fixed in 10% buffered formalin. Sections were then immunohistochemically processed using a monoclonal antibody specific to human fibronectin and streptavidin-biotin detection methods. Positive reactions to fibronectin were found in normal and diseased disk tissues but to a different extent. Normal disk tissues revealed weak fibronectin expression, which was mainly located along the collagen bundles. Temporomandibular joint disks with internal derangement exhibited a higher immunoreactivity. Distinct reticular fibronectin structures were found inside the diseased disk, particularly nearby the newly formed blood vessels, tears, and clefts. In the covering layer of the disk surface, fibronectin was expressed in a fascicular pattern running parallel to the disk surface. The findings suggest that temporomandibular joint disk tissue can express fibronectin and that the expression is more pronounced in disk specimens of patients with internal derangement of the temporomandibular joint, supporting a role of this glycoprotein in the degeneration/regeneration processes of human temporomandibular joint disk tissue.
Collapse
Affiliation(s)
- Rosalia Leonardi
- Department of Medical and Surgical Sciences, II Dental Unit, University of Catania, Catania, Italy.
| | | | | | | | | |
Collapse
|
5
|
Abstract
The standing posture of humans has created both morphological and functional adaptations in the temporo-mandibular joint and the masticatory function. This biped state is the one of the most important characteristic of human evolution. It is furthermore the agent determining most of the functional changes in the whole body. This survey will be carried out in several levels including, a descriptive anatomy, biomechanics, radiological imaging, functioning in the articulation of TMJ. The descriptive anatomic picture will be obtained by the traditional dissection techniques. 20 TMJ joints are dissected from 10 cadavers: 7 cadavers, 65-75 year old, 3 cadavers, 60-65 year old. The x-rays are lateral view and the subjects of the radiological imaging are young's, adults and olds: 1, 3 y-old Male; 1, 7 y-old Female; 1, 14 y-old Female; 10, 19-23 y-old Male; 1, 26 y-old Female; 1, 34 y-old Male; 1, 75 y-old Female. The anatomic elements in the TMJ well resembled the ones described in the literature of the capsule, the ligament, the masticator muscles (masseter, temporal, medial and lateral pterygoids). The temporo-mandibular ligament proved to be difficult to separate from the capsule in some of the specimens. Sometimes it was not always found after a dissection.
Collapse
Affiliation(s)
- J Dargaud
- Hôpital de l'Hôtel Dieu, Service de Stomatologie et d'Implantologie, 1, place de l'Hôpital, 69288 Lyon, France.
| | | |
Collapse
|