miR-9a-5p Protects Ischemic Stroke by Regulating Oxidative Stress and Mitochondrial Autophagy.
DISEASE MARKERS 2023;
2023:5146305. [PMID:
36845011 PMCID:
PMC9957637 DOI:
10.1155/2023/5146305]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 02/19/2023]
Abstract
Purpose
Present research is aimed at exploring the effect of miR-9a-5p on mitochondrial autophagy and alleviating cellular oxidative stress injury in ischemic stroke.
Methods
SH-SY5Y cells were cultured with oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate ischemia/reperfusion. The cells were treated in an anaerobic incubator (95% N2, 5% CO2) for 2 h and then reoxygenated in the normoxic condition for 24 h with 2 ml of normal medium. Cells were transfected with miR-9a-5p mimic/inhibitor or negative control. The RT-qPCR assay was utilized to measure the mRNA expression. Western blot was utilized to evaluate the protein expression. The CCK-8 assay was conducted to detect cell viability. Flow cytometry was applied to examine apoptosis and the cell cycle. The ELISA assay was applied to measure the contents of SOD and MDA in mitochondria. Autophagosomes were observed via electron microscopy.
Results
By comparison with the control group, the miR-9a-5p expression in the OGD/R group obviously declined. Mitochondrial crista breaks, vacuole-like changes, and increased autophagosome formation were observed in the OGD/R group. OGD/R injury enhanced oxidative stress damage and mitophagy. When transfected with the miR-9a-5p mimic, mitophagosome production of SH-SY5Y cells decreased and oxidative stress injury was inhibited. However, the miR-9a-5p inhibitor obviously increased mitophagosome production and enhanced oxidative stress injury.
Conclusion
miR-9a-5p protects against ischemic stroke by inhibiting OGD/R-induced mitochondrial autophagy and alleviating cellular oxidative stress injury.
Collapse