1
|
D'Sa K, Guelfi S, Vandrovcova J, Reynolds RH, Zhang D, Hardy J, Botía JA, Weale ME, Taliun SAG, Small KS, Ryten M. Analysis of subcellular RNA fractions demonstrates significant genetic regulation of gene expression in human brain post-transcriptionally. Sci Rep 2023; 13:13874. [PMID: 37620324 PMCID: PMC10449874 DOI: 10.1038/s41598-023-40324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Gaining insight into the genetic regulation of gene expression in human brain is key to the interpretation of genome-wide association studies for major neurological and neuropsychiatric diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, providing valuable insights into the genetic regulation of steady-state RNA in human brain, but not distinguishing between molecular processes regulating transcription and stability. RNA quantification within cellular fractions can disentangle these processes in cell types and tissues which are challenging to model in vitro. We investigated the underlying molecular processes driving the genetic regulation of gene expression specific to a cellular fraction using allele-specific expression (ASE). Applying ASE analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior prefrontal cortex, cerebellar cortex and putamen tissues from 4 post-mortem neuropathologically-confirmed control human brains, we demonstrate that a significant proportion of genetic regulation of gene expression occurs post-transcriptionally in the cytoplasm, with genes undergoing this form of regulation more likely to be synaptic. These findings have implications for understanding the structure of gene expression regulation in human brain, and importantly the interpretation of rapidly growing single-nucleus brain RNA-sequencing and eQTL datasets, where cytoplasm-specific regulatory events could be missed.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, SE1 1UL, UK
- Department of Clinical and Movement Neurosciences, University College London, London, WC1N 3BG, UK
| | - Sebastian Guelfi
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- Verge Genomics, Tower Pl, South San Francisco, CA, 94080, USA
| | - Jana Vandrovcova
- Dept of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Regina H Reynolds
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
| | - David Zhang
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London, London, WC1N 3BG, UK
- UK Dementia Research Institute at University College London, London, WC1N 3BG, UK
| | - Juan A Botía
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, 30100, Murcia, Spain
| | - Michael E Weale
- Department of Medical & Molecular Genetics, School of Medical Sciences, King's College London, Guy's Hospital, London, SE1 1UL, UK
- Genomics Plc, Oxford, OX1 1JD, UK
| | - Sarah A Gagliano Taliun
- Department of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Montréal Heart Institute, Montréal, QC, H1T 1C8, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, SE1 7EH, UK
| | - Mina Ryten
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, University College London, London, WC1N 1EH, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, WC1N 3JH, UK.
| |
Collapse
|
2
|
Balasooriya GI, Spector DL. Allele-specific differential regulation of monoallelically expressed autosomal genes in the cardiac lineage. Nat Commun 2022; 13:5984. [PMID: 36216821 PMCID: PMC9550772 DOI: 10.1038/s41467-022-33722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/27/2022] [Indexed: 11/29/2022] Open
Abstract
Each mammalian autosomal gene is represented by two alleles in diploid cells. To our knowledge, no insights have been made in regard to allele-specific regulatory mechanisms of autosomes. Here we use allele-specific single cell transcriptomic analysis to elucidate the establishment of monoallelic gene expression in the cardiac lineage. We find that monoallelically expressed autosomal genes in mESCs and mouse blastocyst cells are differentially regulated based on the genetic background of the parental alleles. However, the genetic background of the allele does not affect the establishment of monoallelic genes in differentiated cardiomyocytes. Additionally, we observe epigenetic differences between deterministic and random autosomal monoallelic genes. Moreover, we also find a greater contribution of the maternal versus paternal allele to the development and homeostasis of cardiac tissue and in cardiac health, highlighting the importance of maternal influence in male cardiac tissue homeostasis. Our findings emphasize the significance of allele-specific insights into gene regulation in development, homeostasis and disease.
Collapse
|
3
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
4
|
aScan: A Novel Method for the Study of Allele Specific Expression in Single Individuals. J Mol Biol 2021; 433:166829. [PMID: 33508309 DOI: 10.1016/j.jmb.2021.166829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023]
Abstract
In diploid organisms, two copies of each allele are normally inherited from parents. Paternal and maternal alleles can be regulated and expressed unequally, which is referred to as allele-specific expression (ASE). In this work, we present aScan, a novel method for the identification of ASE from the analysis of matched individual genomic and RNA sequencing data. By performing extensive analyses of both real and simulated data, we demonstrate that aScan can correctly identify ASE with high accuracy and sensitivity in different experimental settings. Additionally, by applying our method to a small cohort of individuals that are not included in publicly available databases of human genetic variation, we outline the value of possible applications of ASE analysis in single individuals for deriving a more accurate annotation of "private" low-frequency genetic variants associated with regulatory effects on transcription. All in all, we believe that aScan will represent a beneficial addition to the set of bioinformatics tools for the analysis of ASE. Finally, while our method was initially conceived for the analysis of RNA-seq data, it can in principle be applied to any quantitative NGS assay for which matched genotypic and expression data are available. AVAILABILITY: aScan is currently available in the form of an open source standalone software package at: https://github.com/Federico77z/aScan/. aScan version 1.0.3, available at https://github.com/Federico77z/aScan/releases/tag/1.0.3, has been used for all the analyses included in this manuscript. A Docker image of the tool has also been made available at https://github.com/pmandreoli/aScanDocker.
Collapse
|
5
|
Battich N, Beumer J, de Barbanson B, Krenning L, Baron CS, Tanenbaum ME, Clevers H, van Oudenaarden A. Sequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategies. Science 2020; 367:1151-1156. [PMID: 32139547 DOI: 10.1126/science.aax3072] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022]
Abstract
The regulation of messenger RNA levels in mammalian cells can be achieved by the modulation of synthesis and degradation rates. Metabolic RNA-labeling experiments in bulk have quantified these rates using relatively homogeneous cell populations. However, to determine these rates during complex dynamical processes, for instance during cellular differentiation, single-cell resolution is required. Therefore, we developed a method that simultaneously quantifies metabolically labeled and preexisting unlabeled transcripts in thousands of individual cells. We determined synthesis and degradation rates during the cell cycle and during differentiation of intestinal stem cells, revealing major regulatory strategies. These strategies have distinct consequences for controlling the dynamic range and precision of gene expression. These findings advance our understanding of how individual cells in heterogeneous populations shape their gene expression dynamics.
Collapse
Affiliation(s)
- Nico Battich
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.
| | - Joep Beumer
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Buys de Barbanson
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Lenno Krenning
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Chloé S Baron
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands
| | - Alexander van Oudenaarden
- Oncode Institute, Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.
| |
Collapse
|
6
|
ECOVOIU ALEXANDRUAL, GRAUR MARIAN, RATIU ATTILACRISTIAN. Hypomorphic alleles of gammaCop gene from Drosophila melanogaster display an unexpected expression pattern in mutant eggs, testes and embryos. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/324.331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Schaefke B, Sun W, Li YS, Fang L, Chen W. The evolution of posttranscriptional regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1485. [PMID: 29851258 DOI: 10.1002/wrna.1485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Abstract
"DNA makes RNA makes protein." After transcription, mRNAs undergo a series of intertwining processes to be finally translated into functional proteins. The "posttranscriptional" regulation (PTR) provides cells an extended option to fine-tune their proteomes. To meet the demands of complex organism development and the appropriate response to environmental stimuli, every step in these processes needs to be finely regulated. Moreover, changes in these regulatory processes are important driving forces underlying the evolution of phenotypic differences across different species. The major PTR mechanisms discussed in this review include the regulation of splicing, polyadenylation, decay, and translation. For alternative splicing and polyadenylation, we mainly discuss their evolutionary dynamics and the genetic changes underlying the regulatory differences in cis-elements versus trans-factors. For mRNA decay and translation, which, together with transcription, determine the cellular RNA or protein abundance, we focus our discussion on how their divergence coordinates with transcriptional changes to shape the evolution of gene expression. Then to highlight the importance of PTR in the evolution of higher complexity, we focus on their roles in two major phenomena during eukaryotic evolution: the evolution of multicellularity and the division of labor between different cell types and tissues; and the emergence of diverse, often highly specialized individual phenotypes, especially those concerning behavior in eusocial insects. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution Translation > Translation Regulation RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Bernhard Schaefke
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Pharmaceutical Chemistry and Cardiovascular Research Institute, University of California San Francisco, San Francisco
| | - Yi-Sheng Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Liang Fang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Medi-X Institute, SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|