1
|
Takaoka S, Jaso-Vera ME, Ruan X. Disrupted Post-Transcriptional Regulation of Gene Expression as a Hallmark of Fatty Liver Progression. Int J Mol Sci 2024; 25:11054. [PMID: 39456836 PMCID: PMC11507451 DOI: 10.3390/ijms252011054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
It is known that both transcriptional and post-transcriptional mechanisms control messenger RNA (mRNA) levels. Compared to transcriptional regulations, our understanding of how post-transcriptional regulations adapt during fatty liver progression at the whole-transcriptome level is unclear. While traditional RNA-seq analysis uses only reads mapped to exons to determine gene expression, recent studies support the idea that intron-mapped reads can be reliably used to estimate gene transcription. In this study, we analyzed differential gene expression at both the exon and intron levels using two liver RNA-seq datasets from mice that were fed a high-fat diet for seven weeks (mild fatty liver) or thirty weeks (severe fatty liver). We found that the correlation between gene transcription and mature mRNA levels was much lower in mice with mild fatty liver as compared with mice with severe fatty liver. This result indicates broad post-transcriptional regulations for early fatty liver and such regulations are compromised for severe fatty liver. Specifically, gene ontology analysis revealed that genes involved in synapse organization and cell adhesion were transcriptionally upregulated, while their mature mRNAs were unaffected in mild fatty liver. Further characterization of post-transcriptionally suppressed genes in early fatty liver revealed that their mRNAs harbor a significantly longer 3' UTR, one of the major features that may subject RNA transcripts to nonsense-mediated RNA decay (NMD). We further show that the expression of representative genes that were post-transcriptionally suppressed were upregulated in mice with a hepatocyte-specific defect of NMD. Finally, we provide data supporting a time-dependent decrease in NMD activity in the liver of a diet-induced metabolic-dysfunction-associated fatty liver disease mouse model. In summary, our study supports the conclusion that NMD is essential in preventing unwanted/harmful gene expression at the early stage of fatty liver and such a mechanism is lost due to decreased NMD activity in mice with severe fatty liver.
Collapse
Affiliation(s)
- Shohei Takaoka
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.T.); (M.E.J.-V.)
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Marcos E. Jaso-Vera
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.T.); (M.E.J.-V.)
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Xiangbo Ruan
- Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (S.T.); (M.E.J.-V.)
- Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| |
Collapse
|
2
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
3
|
Zdyrski C, Gabriel V, Gessler TB, Ralston A, Sifuentes-Romero I, Kundu D, Honold S, Wickham H, Topping NE, Sahoo DK, Bista B, Tamplin J, Ospina O, Piñeyro P, Arriaga M, Galan JA, Meyerholz DK, Allenspach K, Mochel JP, Valenzuela N. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations. Commun Biol 2024; 7:218. [PMID: 38388772 PMCID: PMC10883927 DOI: 10.1038/s42003-024-05818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024] Open
Abstract
Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.
Collapse
Affiliation(s)
- Christopher Zdyrski
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA.
- 3D Health Solutions Inc., Ames, IA, USA.
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA.
| | - Vojtech Gabriel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Thea B Gessler
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Itzel Sifuentes-Romero
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Debosmita Kundu
- Department of Statistics, Iowa State University, Ames, IA, USA
| | - Sydney Honold
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Hannah Wickham
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
| | - Nicholas E Topping
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
| | - Basanta Bista
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jeffrey Tamplin
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Oscar Ospina
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, Iowa State University, Ames, IA, USA
| | - Marco Arriaga
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Jacob A Galan
- Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | | | - Karin Allenspach
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- 3D Health Solutions Inc., Ames, IA, USA
- SMART Pharmacology, Precision One Health Initiative, University of Georgia, Athens, GA, USA
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
4
|
Wang H, Cai H, Li L. Comprehensive analysis of m6A reader YTHDF2 prognosis, immune infiltration, and related regulatory networks in hepatocellular carcinoma. Heliyon 2024; 10:e23204. [PMID: 38163150 PMCID: PMC10756983 DOI: 10.1016/j.heliyon.2023.e23204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Background N6-Methyladenosine (m6A) RNA modification is the most prevalent internal modification pattern in eukaryotic mRNAs and plays critical roles in diverse physiological and pathological processes. However, the expression of m6A regulator YTHDF2, its prognostic value, its biological function, its correlation with tumor microenvironment (TME) immune infiltrates, and related regulatory networks in hepatocellular carcinoma (HCC) remain determined. Methods TCGA, GTEx, and GEO databases were used to investigate the expression profile of YTHDF2 in HCC. We performed differentially expressed genes (DEGs) analysis and constructed a PPI network to explore the biological processes of YTHDF2 in HCC. Kaplan-Meier curves and Cox regression analysis were used to assess the prognostic value of YTHDF2 and then a clinical prognostic nomogram was constructed. Additionally, ssGSEA was performed to assess the correlation between YTHDF2 and immune infiltration levels. The TISIDB database was applied to explore the expression of YTHDF2 in immune and molecular subtypes of HCC. GSEA identifies the YTHDF2-related signaling pathways. Finally, we utilized miRNet and starBase database to construct regulatory networks for HCC based on lncRNA-miRNA and miRNA-YTHDF2 interactions. Results YTHDF2 was significantly upregulated in HCC tumor tissues compared with the adjacent normal tissues. HCC patients in the high YTHDF2 expression group had poorer survival. Multivariate Cox analysis suggested that YTHDF2 may be a new independent prognostic indicator for HCC patients, with the prognostic nomogram exhibiting satisfactory results. YTHDF2 expression was significantly correlated with TME immune cell-infiltrating characteristics. Strong correlations were also shown in immune subtypes, molecular subtypes and immune checkpoints. Further analysis revealed that the combination of YTHDF2 expression and immune cell score was considerably associated with survival outcome in HCC patients. GESA analysis demonstrated that high YTHDF2 expression is associated with multiple biological processes and oncogenic pathways. Moreover, 14 possible regulatory networks were constructed, which are associated with HCC progression. Conclusion Our findings revealed that YTHDF2 may serve as a promising prognostic biomarker for HCC and may regulate the tumor immune microenvironment to provide effective therapeutic strategies.
Collapse
Affiliation(s)
- Hang Wang
- Shengli Clinical Medical College of Fujian Medical University, Department of Health Management, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Shengli Clinical Medical College of Fujian Medical University, Department of Disease Prevention and Healthcare, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Hui Cai
- Shengli Clinical Medical College of Fujian Medical University, Department of Health Management, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Li Li
- Shengli Clinical Medical College of Fujian Medical University, Department of Health Management, Fujian Provincial Hospital, Fuzhou, Fujian, China
- Shengli Clinical Medical College of Fujian Medical University, Department of Disease Prevention and Healthcare, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
6
|
Hagkarim NC, Hajkarim MC, Suzuki T, Fujiwara T, Winkler GS, Stewart GS, Grand RJ. Disruption of the Mammalian Ccr4-Not Complex Contributes to Transcription-Mediated Genome Instability. Cells 2023; 12:1868. [PMID: 37508532 PMCID: PMC10378556 DOI: 10.3390/cells12141868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The mammalian Ccr4-Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. It is involved in the control of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, and nuclear RNA surveillance; the Ccr4-Not complex also plays a central role in the regulation of mRNA decay. Growing evidence suggests that gene transcription has a vital role in shaping the landscape of genome replication and is also a potent source of replication stress and genome instability. Here, we have examined the effects of the inactivation of the Ccr4-Not complex, via the depletion of the scaffold subunit CNOT1, on DNA replication and genome integrity in mammalian cells. In CNOT1-depleted cells, the elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which, together with R-loop accumulation, results in replication fork slowing, DNA damage, and senescence. Furthermore, we have shown that the stability of TBP mRNA increases in the absence of CNOT1, which may explain its elevated protein expression in CNOT1-depleted cells. Finally, we have shown the activation of mitogen-activated protein kinase signalling as evidenced by ERK1/2 phosphorylation in the absence of CNOT1, which may be responsible for the observed cell cycle arrest at the border of G1/S.
Collapse
Affiliation(s)
- Nafiseh Chalabi Hagkarim
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Morteza Chalabi Hajkarim
- Department of Medicine Haematology & Oncology, Columbia University, New York City, NY 10032, USA
| | - Toru Suzuki
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka City 577-8502, Japan
| | | | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| | - Roger J Grand
- Institute for Cancer and Genomic Sciences, The Medical School, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
8
|
Wang J, Wang M, Shao J, Liu Z, Fu C, Chen G, Zhao K, Li H, Sun W, Jia X, Chen S, Lai S. Combined analysis of differentially expressed lncRNAs and miRNAs in liver tissues of high-fat fed rabbits by transcriptome sequencing. Front Genet 2022; 13:1000574. [PMID: 36276943 PMCID: PMC9585185 DOI: 10.3389/fgene.2022.1000574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
High-fat diet could lead to a series of metabolic diseases, including obesity, and its mechanism is not clear. In this study, the rabbit individuals were fed with high-fat diet, the liver tissues were collected, high-throughput sequencing technology was used to reveal the expression of lncRNA and miRNA difference, and the molecular regulation mechanism of lncRNA-miRNA. A total of 24,615 DE lncRNAs and 52 DE miRNAs were identified, including 15 novel discovered DE miRNAs (5 upregulated and 10 downregulated). Furthermore, five miRNAs and three mRNAs were verified by qRT-PCR, and the results showed that the expression of the DE miRNAs and DE lncRNAs in the two groups was consistent with our sequencing results. GO and KEGG analyzed 7,57,139 target genes respectively, enriching the pathways related to lipid metabolism, including mucin O-glycan biosynthesis pathway, insulin resistance and glucagon signaling pathway. Moreover, 65 targeting relationships were obtained. Among them, LOC103348122/miR-450a-5p, LOC103350359/miR-450a-3p and LOC103350429/miR-148a-5p were proposed the first time. Significantly, LOC103348122/miR-450a-5p and LOC103350429/miR-148a-5p were related to lipid metabolism in the liver. This study is of great significance to the CeRNA regulatory network related to lipid metabolism in the liver of rabbits, and provides a basis for understanding hepatic steatosis in rabbits.
Collapse
Affiliation(s)
- Jie Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Meigui Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiahao Shao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zheliang Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chong Fu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guanhe Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kaisen Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenqiang Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
- *Correspondence: Songjia Lai,
| |
Collapse
|
9
|
Katsumura S, Siddiqui N, Goldsmith MR, Cheah JH, Fujikawa T, Minegishi G, Yamagata A, Yabuki Y, Kobayashi K, Shirouzu M, Inagaki T, Huang THM, Musi N, Topisirovic I, Larsson O, Morita M. Deadenylase-dependent mRNA decay of GDF15 and FGF21 orchestrates food intake and energy expenditure. Cell Metab 2022; 34:564-580.e8. [PMID: 35385705 PMCID: PMC9386786 DOI: 10.1016/j.cmet.2022.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/26/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022]
Abstract
Hepatokines, secretory proteins from the liver, mediate inter-organ communication to maintain a metabolic balance between food intake and energy expenditure. However, molecular mechanisms by which hepatokine levels are rapidly adjusted following stimuli are largely unknown. Here, we unravel how CNOT6L deadenylase switches off hepatokine expression after responding to stimuli (e.g., exercise and food) to orchestrate energy intake and expenditure. Mechanistically, CNOT6L inhibition stabilizes hepatic Gdf15 and Fgf21 mRNAs, increasing corresponding serum protein levels. The resulting upregulation of GDF15 stimulates the hindbrain to suppress appetite, while increased FGF21 affects the liver and adipose tissues to induce energy expenditure and lipid consumption. Despite the potential of hepatokines to treat metabolic disorders, their administration therapies have been challenging. Using small-molecule screening, we identified a CNOT6L inhibitor enhancing GDF15 and FGF21 hepatokine levels, which dramatically improves diet-induced metabolic syndrome. Our discovery, therefore, lays the foundation for an unprecedented strategy to treat metabolic syndrome.
Collapse
Affiliation(s)
- Sakie Katsumura
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | | | - Jaime H Cheah
- High Throughput Sciences Facility, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teppei Fujikawa
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genki Minegishi
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yukako Yabuki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Kaoru Kobayashi
- Department of Biopharmaceutics, Graduate School of Clinical Pharmacy, Meiji Pharmaceutical University, Kiyose-shi, Tokyo 204-8588, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-shi, Gunma 371-8512, Japan
| | - Tim H-M Huang
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; San Antonio Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - Ivan Topisirovic
- Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC H3A 1A3, Canada; Gerald Bronfman Department of Oncology, Division of Experimental Medicine and Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Masahiro Morita
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Suzuki T, Hoshina M, Nishijima S, Hoshina N, Kikuguchi C, Tomohiro T, Fukao A, Fujiwara T, Yamamoto T. Regulation of CCR4-NOT complex deadenylase activity and cellular responses by MK2-dependent phosphorylation of CNOT2. RNA Biol 2022; 19:234-246. [PMID: 35129087 PMCID: PMC8820811 DOI: 10.1080/15476286.2021.2021676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CCR4-NOT complex-mediated mRNA deadenylation serves critical functions in multiple biological processes, yet how this activity is regulated is not fully understood. Here, we show that osmotic stress induces MAPKAPK-2 (MK2)-mediated phosphorylation of CNOT2. Programmed cell death is greatly enhanced by osmotic stress in CNOT2-depleted cells, indicating that CNOT2 is responsible for stress resistance of cells. Although wild-type (WT) and non-phosphorylatable CNOT2 mutants reverse this sensitivity, a phosphomimetic form of CNOT2, in which serine at the phosphorylation site is replaced with glutamate, does not have this function. We also show that mRNAs have elongated poly(A) tails in CNOT2-depleted cells and that introduction of CNOT2 WT or a non-phosphorylatable mutant, but not phosphomimetic CNOT2, renders their poly(A) tail lengths comparable to those in control HeLa cells. Consistent with this, the CCR4-NOT complex containing phosphomimetic CNOT2 exhibits less deadenylase activity than that containing CNOT2 WT. These data suggest that CCR4-NOT complex deadenylase activity is regulated by post-translational modification, yielding dynamic control of mRNA deadenylation.
Collapse
Affiliation(s)
- Toru Suzuki
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Miyuki Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Naosuke Hoshina
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chisato Kikuguchi
- Laboratory for Immunogenetics, Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - Takumi Tomohiro
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | - Akira Fukao
- Laboratory of Biochemistry, Kindai University, Higashi-Osaka, Japan
| | | | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| |
Collapse
|
11
|
Mohamed HMA, Takahashi A, Nishijima S, Adachi S, Murai I, Okamura H, Yamamoto T. CNOT1 regulates circadian behaviour through Per2 mRNA decay in a deadenylation-dependent manner. RNA Biol 2021; 19:703-718. [PMID: 35510877 PMCID: PMC9090297 DOI: 10.1080/15476286.2022.2071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Circadian clocks are an endogenous internal timekeeping mechanism that drives the rhythmic expression of genes, controlling the 24 h oscillatory pattern in behaviour and physiology. It has been recently shown that post-transcriptional mechanisms are essential for controlling rhythmic gene expression. Controlling the stability of mRNA through poly(A) tail length modulation is one such mechanism. In this study, we show that Cnot1, encoding the scaffold protein of the CCR4-NOT deadenylase complex, is highly expressed in the suprachiasmatic nucleus, the master timekeeper. CNOT1 deficiency in mice results in circadian period lengthening and alterations in the mRNA and protein expression patterns of various clock genes, mainly Per2. Per2 mRNA exhibited a longer poly(A) tail and increased mRNA stability in Cnot1+/- mice. CNOT1 is recruited to Per2 mRNA through BRF1 (ZFP36L1), which itself oscillates in antiphase with Per2 mRNA. Upon Brf1 knockdown, Per2 mRNA is stabilized leading to increased PER2 expression levels. This suggests that CNOT1 plays a role in tuning and regulating the mammalian circadian clock.
Collapse
Affiliation(s)
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Saori Nishijima
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shungo Adachi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Iori Murai
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Okamura
- Laboratory of Molecular Brain Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
12
|
Poetz F, Corbo J, Levdansky Y, Spiegelhalter A, Lindner D, Magg V, Lebedeva S, Schweiggert J, Schott J, Valkov E, Stoecklin G. RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation. Nat Commun 2021; 12:7175. [PMID: 34887419 PMCID: PMC8660800 DOI: 10.1038/s41467-021-27471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Alexander Spiegelhalter
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Jörg Schweiggert
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA.
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
13
|
Takaoka S, Yanagiya A, Mohamed HMA, Higa R, Abe T, Inoue KI, Takahashi A, Stoney P, Yamamoto T. Neuronal XRN1 is required for maintenance of whole-body metabolic homeostasis. iScience 2021; 24:103151. [PMID: 34646989 PMCID: PMC8496175 DOI: 10.1016/j.isci.2021.103151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Control of mRNA stability and degradation is essential for appropriate gene expression, and its dysregulation causes various disorders, including cancer, neurodegenerative diseases, diabetes, and obesity. The 5′–3′ exoribonuclease XRN1 executes the last step of RNA decay, but its physiological impact is not well understood. To address this, forebrain-specific Xrn1 conditional knockout mice (Xrn1-cKO) were generated, as Xrn1 null mice were embryonic lethal. Xrn1-cKO mice exhibited obesity with leptin resistance, hyperglycemia, hyperphagia, and decreased energy expenditure. Obesity resulted from dysregulated communication between the central nervous system and peripheral tissues. Moreover, expression of mRNAs encoding proteins that regulate appetite and energy expenditure was dysregulated in the hypothalamus of Xrn1-cKO mice. Therefore, we propose that XRN1 function in the hypothalamus is critical for maintenance of metabolic homeostasis. Forebrain specific Xrn1-cKO mice exhibit obesity with hyperphagia Xrn1-cKO mice exhibit leptin resistance, insulin resistance, and impaired glucose tolerance Xrn1-cKO mice cannot utilize fat as an energy source and mainly use carbohydrate AgRP expression is upregulated in the Xrn1-cKO hypothalamus
Collapse
Affiliation(s)
- Shohei Takaoka
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Haytham Mohamed Aly Mohamed
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Rei Higa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.,Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Patrick Stoney
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
14
|
Akiyama T, Suzuki T, Yamamoto T. RNA decay machinery safeguards immune cell development and immunological responses. Trends Immunol 2021; 42:447-460. [PMID: 33858774 DOI: 10.1016/j.it.2021.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/30/2022]
Abstract
mRNA decay systems control mRNA abundance by counterbalancing transcription. Several recent studies show that mRNA decay pathways are crucial to conventional T and B cell development in vertebrates, in addition to suppressing autoimmunity and excessive inflammatory responses. Selective mRNA degradation triggered by the CCR4-NOT deadenylase complex appears to be required in lymphocyte development, cell quiescence, V(D)J (variable-diversity-joining) recombination, and prevention of inappropriate apoptosis in mice. Moreover, a recent study suggests that mRNA decay may be involved in preventing human hyperinflammatory disease. These findings imply that mRNA decay pathways in humans and mice do not simply maintain mRNA homeostatic turnover but can also precisely regulate immune development and immunological responses by selectively targeting mRNAs.
Collapse
Affiliation(s)
- Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Graduate School of Medical Life Science, Yokohama City University, Yokohama 230-0045, Japan.
| | - Toru Suzuki
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Tadashi Yamamoto
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan; Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
15
|
Regulation of Fetal Genes by Transitions among RNA-Binding Proteins during Liver Development. Int J Mol Sci 2020; 21:ijms21239319. [PMID: 33297405 PMCID: PMC7731027 DOI: 10.3390/ijms21239319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/05/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022] Open
Abstract
Transcripts of alpha-fetoprotein (Afp), H19, and insulin-like growth factor 2 (Igf2) genes are highly expressed in mouse fetal liver, but decrease drastically during maturation. While transcriptional regulation of these genes has been well studied, the post-transcriptional regulation of their developmental decrease is poorly understood. Here, we show that shortening of poly(A) tails and subsequent RNA decay are largely responsible for the postnatal decrease of Afp, H19, and Igf2 transcripts in mouse liver. IGF2 mRNA binding protein 1 (IMP1), which regulates stability and translation efficiency of target mRNAs, binds to these fetal liver transcripts. When IMP1 is exogenously expressed in mouse adult liver, fetal liver transcripts show higher expression and possess longer poly(A) tails, suggesting that IMP1 stabilizes them. IMP1 declines concomitantly with fetal liver transcripts as liver matures. Instead, RNA-binding proteins (RBPs) that promote RNA decay, such as cold shock domain containing protein E1 (CSDE1), K-homology domain splicing regulatory protein (KSRP), and CUG-BP1 and ETR3-like factors 1 (CELF1), bind to 3' regions of fetal liver transcripts. These data suggest that transitions among RBPs associated with fetal liver transcripts shift regulation from stabilization to decay, leading to a postnatal decrease in those fetal transcripts.
Collapse
|
16
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
17
|
Mostafa D, Yanagiya A, Georgiadou E, Wu Y, Stylianides T, Rutter GA, Suzuki T, Yamamoto T. Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun Biol 2020; 3:476. [PMID: 32859966 PMCID: PMC7455721 DOI: 10.1038/s42003-020-01201-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic β-cells are responsible for production and secretion of insulin in response to increasing blood glucose levels. Defects in β-cell function lead to hyperglycemia and diabetes mellitus. Here, we show that CNOT3, a CCR4-NOT deadenylase complex subunit, is dysregulated in islets in diabetic db/db mice, and that it is essential for murine β cell maturation and identity. Mice with β cell-specific Cnot3 deletion (Cnot3βKO) exhibit impaired glucose tolerance, decreased β cell mass, and they gradually develop diabetes. Cnot3βKO islets display decreased expression of key regulators of β cell maturation and function. Moreover, they show an increase of progenitor cell markers, β cell-disallowed genes, and genes relevant to altered β cell function. Cnot3βKO islets exhibit altered deadenylation and increased mRNA stability, partly accounting for the increased expression of those genes. Together, these data reveal that CNOT3-mediated mRNA deadenylation and decay constitute previously unsuspected post-transcriptional mechanisms essential for β cell identity.
Collapse
Affiliation(s)
- Dina Mostafa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Yibo Wu
- Laboratory for Next-Generation Proteomics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| | - Theodoros Stylianides
- Centre of Innovative and Collaborative Construction Engineering, Loughborough University, Leicestershire, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Toru Suzuki
- Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan.
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|