1
|
Wang G, Liu X, Wang A, Wen J, Kim P, Song Q, Liu X, Zhou X. CRISPRoffT: comprehensive database of CRISPR/Cas off-targets. Nucleic Acids Res 2025; 53:D914-D924. [PMID: 39526384 PMCID: PMC11701555 DOI: 10.1093/nar/gkae1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) programmable nuclease system continues to evolve, with in vivo therapeutic gene editing increasingly applied in clinical settings. However, off-target effects remain a significant challenge, hindering its broader clinical application. To enhance the development of gene-editing therapies and the accuracy of prediction algorithms, we developed CRISPRoffT (https://ccsm.uth.edu/CRISPRoffT/). Users can access a comprehensive repository of off-target regions predicted and validated by a diverse range of technologies across various cell lines, Cas enzyme variants, engineered sgRNAs (single guide RNAs) and CRISPR editing systems. CRISPRoffT integrates results of off-target analysis from 74 studies, encompassing 29 experimental prediction techniques, 368 guide sequences, 226 164 potential guide and off-target pairs and 8840 validated off-targets. CRISPRoffT features off-target data from different CRISPR approaches (knockout, base editing and prime editing) applied under diverse experimental conditions, including 85 different Cas/guide RNA (gRNA) combinations used across 34 different human and mouse cell lines. CRISPRoffT provides results of comparative analyses for individual guide sequences, genes, cell types, techniques and Cas/gRNA combinations under different conditions. CRISPRoffT is a unique resource providing valuable insights that facilitate the safety-driven design of CRISPR-based therapeutics, inform experimental design, advance the development of computational off-target prediction algorithms and guide RNA design algorithms.
Collapse
Affiliation(s)
- Grant Wang
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Xiaona Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Aoqi Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 2222 Xinchuan Road, Chengdu, Sichuan, 610041, PR China
| | - Jianguo Wen
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Pora Kim
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Qianqian Song
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 1889 Museum Road, Gainesville, FL, 32611, USA
| | - Xiaona Liu
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
2
|
Xu W, Zhang S, Qin H, Yao K. From bench to bedside: cutting-edge applications of base editing and prime editing in precision medicine. J Transl Med 2024; 22:1133. [PMID: 39707395 DOI: 10.1186/s12967-024-05957-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
CRISPR-based gene editing technology theoretically allows for precise manipulation of any genetic target within living cells, achieving the desired sequence modifications. This revolutionary advancement has fundamentally transformed the field of biomedicine, offering immense clinical potential for treating and correcting genetic disorders. In the treatment of most genetic diseases, precise genome editing that avoids the generation of mixed editing byproducts is considered the ideal approach. This article reviews the current progress of base editors and prime editors, elaborating on specific examples of their applications in the therapeutic field, and highlights opportunities for improvement. Furthermore, we discuss the specific performance of these technologies in terms of safety and efficacy in clinical applications, and analyze the latest advancements and potential directions that could influence the future development of genome editing technologies. Our goal is to outline the clinical relevance of this rapidly evolving scientific field and preview a roadmap for successful DNA base editing therapies for the treatment of hereditary or idiopathic diseases.
Collapse
Affiliation(s)
- Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
3
|
Vats S, Kumar J, Sonah H, Zhang F, Deshmukh R. Prime editing in plants: prospects and challenges. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5344-5356. [PMID: 38366636 DOI: 10.1093/jxb/erae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Prime editors are reverse transcriptase (RT)-based genome-editing tools that utilize double-strand break (DSB)-free mechanisms to decrease off-target editing in genomes and enhance the efficiency of targeted insertions. The multiple prime editors that have been developed within a short span of time are a testament to the potential of this technique for targeted insertions. This is mainly because of the possibility of generation of all types of mutations including deletions, insertions, transitions, and transversions. Prime editing reverses several bottlenecks of gene editing technologies that limit the biotechnological applicability to produce designer crops. This review evaluates the status and evolution of the prime editing technique in terms of the types of editors available up to prime editor 5 and twin prime editors, and considers the developments in plants in a systematic manner. The various factors affecting prime editing efficiency in plants are discussed in detail, including the effects of temperature, the prime editing guide (peg)RNA, and RT template amongst others. We discuss the current obstructions, key challenges, and available resolutions associated with the technique, and consider future directions and further improvements that are feasible to elevate the efficiency in plants.
Collapse
Affiliation(s)
- Sanskriti Vats
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, Haryana (NCR Delhi), India
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Mahendragarh, Haryana, 123031, India
| |
Collapse
|
4
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
5
|
Sánchez Rivera FJ, Dow LE. How CRISPR Is Revolutionizing the Generation of New Models for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041384. [PMID: 37487630 PMCID: PMC11065179 DOI: 10.1101/cshperspect.a041384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers arise through acquisition of mutations in genes that regulate core biological processes like cell proliferation and cell death. Decades of cancer research have led to the identification of genes and mutations causally involved in disease development and evolution, yet defining their precise function across different cancer types and how they influence therapy responses has been challenging. Mouse models have helped define the in vivo function of cancer-associated alterations, and genome-editing approaches using CRISPR have dramatically accelerated the pace at which these models are developed and studied. Here, we highlight how CRISPR technologies have impacted the development and use of mouse models for cancer research and discuss the many ways in which these rapidly evolving platforms will continue to transform our understanding of this disease.
Collapse
Affiliation(s)
- Francisco J Sánchez Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| |
Collapse
|
6
|
Gould SI, Wuest AN, Dong K, Johnson GA, Hsu A, Narendra VK, Atwa O, Levine SS, Liu DR, Sánchez Rivera FJ. High-throughput evaluation of genetic variants with prime editing sensor libraries. Nat Biotechnol 2024:10.1038/s41587-024-02172-9. [PMID: 38472508 DOI: 10.1038/s41587-024-02172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Tumor genomes often harbor a complex spectrum of single nucleotide alterations and chromosomal rearrangements that can perturb protein function. Prime editing has been applied to install and evaluate genetic variants, but previous approaches have been limited by the variable efficiency of prime editing guide RNAs. Here we present a high-throughput prime editing sensor strategy that couples prime editing guide RNAs with synthetic versions of their cognate target sites to quantitatively assess the functional impact of endogenous genetic variants. We screen over 1,000 endogenous cancer-associated variants of TP53-the most frequently mutated gene in cancer-to identify alleles that impact p53 function in mechanistically diverse ways. We find that certain endogenous TP53 variants, particularly those in the p53 oligomerization domain, display opposite phenotypes in exogenous overexpression systems. Our results emphasize the physiological importance of gene dosage in shaping native protein stoichiometry and protein-protein interactions, and establish a framework for studying genetic variants in their endogenous sequence context at scale.
Collapse
Affiliation(s)
- Samuel I Gould
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexandra N Wuest
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kexin Dong
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Grace A Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alvin Hsu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Varun K Narendra
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ondine Atwa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stuart S Levine
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Francisco J Sánchez Rivera
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
8
|
Petrova IO, Smirnikhina SA. The Development, Optimization and Future of Prime Editing. Int J Mol Sci 2023; 24:17045. [PMID: 38069367 PMCID: PMC10707272 DOI: 10.3390/ijms242317045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Prime editing is a rapidly developing method of CRISPR/Cas-based genome editing. The increasing number of novel PE applications and improved versions demands constant analysis and evaluation. The present review covers the mechanism of prime editing, the optimization of the method and the possible next step in the evolution of CRISPR/Cas9-associated genome editing. The basic components of a prime editing system are a prime editor fusion protein, consisting of nickase and reverse transcriptase, and prime editing guide RNA, consisting of a protospacer, scaffold, primer binding site and reverse transcription template. Some prime editing systems include other parts, such as additional RNA molecules. All of these components were optimized to achieve better efficiency for different target organisms and/or compactization for viral delivery. Insights into prime editing mechanisms allowed us to increase the efficiency by recruiting mismatch repair inhibitors. However, the next step in prime editing evolution requires the incorporation of new mechanisms. Prime editors combined with integrases allow us to combine the precision of prime editing with the target insertion of large, several-kilobase-long DNA fragments.
Collapse
Affiliation(s)
- Irina O. Petrova
- Laboratory of Genome Editing, Research Center for Medical Genetics, Moskvorechye 1, 115478 Moscow, Russia
| | | |
Collapse
|
9
|
Jin S, Lin Q, Gao Q, Gao C. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs). Nat Protoc 2023; 18:831-853. [PMID: 36434096 DOI: 10.1038/s41596-022-00773-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Prime editors (PEs), which can install desired base edits without donor DNA or double-strand breaks, have been used in plants and can, in principle, accelerate crop improvement and breeding. However, their editing efficiency in plants is generally low. Optimizing the prime editing guide RNA (pegRNA) by designing the sequence on the basis of melting temperature, using dual-pegRNAs and engineering PEs have all been shown to enhance PE efficiency. In addition, an automated pegRNA design platform, PlantPegDesigner, has been developed on the basis of rice prime editing experimental data. In this protocol, we present detailed protocols for designing and optimizing pegRNAs using PlantPegDesigner, constructing engineered plant PE vectors with enhanced editing efficiency for prime editing, evaluating prime editing efficiencies using a reporter system and comparing the effectiveness and byproducts of PEs by deep amplicon sequencing. Using this protocol, researchers can construct optimized pegRNAs for prime editing in 4-7 d and obtain prime-edited rice or wheat plants within 3 months.
Collapse
Affiliation(s)
- Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Qi Biodesign, Life Science Park, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Chen PJ, Liu DR. Prime editing for precise and highly versatile genome manipulation. Nat Rev Genet 2023; 24:161-177. [PMID: 36344749 PMCID: PMC10989687 DOI: 10.1038/s41576-022-00541-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Programmable gene-editing tools have transformed the life sciences and have shown potential for the treatment of genetic disease. Among the CRISPR-Cas technologies that can currently make targeted DNA changes in mammalian cells, prime editors offer an unusual combination of versatility, specificity and precision. Prime editors do not require double-strand DNA breaks and can make virtually any substitution, small insertion and small deletion within the DNA of living cells. Prime editing minimally requires a programmable nickase fused to a polymerase enzyme, and an extended guide RNA that both specifies the target site and templates the desired genome edit. In this Review, we summarize prime editing strategies to generate programmed genomic changes, highlight their limitations and recent developments that circumvent some of these bottlenecks, and discuss applications and future directions.
Collapse
Affiliation(s)
- Peter J Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Zdraljevic S, Walter-McNeill L, Marquez H, Kruglyak L. Heritable Cas9-induced nonhomologous recombination in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000775. [PMID: 36879982 PMCID: PMC9984945 DOI: 10.17912/micropub.biology.000775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/08/2023]
Abstract
Identification of the genetic basis of phenotypic variation within species remains challenging. In species with low recombination rates, such as Caenorhabditis elegans , genomic regions linked to a phenotype of interest by genetic mapping studies are often large, making it difficult to identify the specific genes and DNA sequence variants that underlie phenotypic differences. Here, we introduce a method that enables researchers to induce heritable targeted recombination in C. elegans with Cas9. We demonstrate that high rates of targeted nonhomologous recombination can be induced by Cas9 in a genomic region in which naturally occurring meiotic recombination events are exceedingly rare. We anticipate that Cas9-induced nonhomologous recombination (CINR) will greatly facilitate high-resolution genetic mapping in this species.
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Heriberto Marquez
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
12
|
Zdraljevic S, Walter-McNeill L, Marquez H, Kruglyak L. Cas9-induced nonhomologous recombination in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524763. [PMID: 36711988 PMCID: PMC9882370 DOI: 10.1101/2023.01.19.524763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Identification of the genetic basis of phenotypic variation within species remains challenging. In species with low recombination rates, such as Caenorhabditis elegans , genomic regions linked to a phenotype of interest by genetic mapping studies are often large, making it difficult to identify the specific genes and DNA sequence variants that underlie phenotypic differences. Here, we introduce a method that enables researchers to induce targeted recombination in C. elegans with Cas9. We demonstrate that high rates of targeted recombination can be induced by Cas9 in a genomic region in which naturally occurring recombination events are exceedingly rare. We anticipate that Cas9-induced nonhomologous recombination (CINR) will greatly facilitate high-resolution genetic mapping in this species.
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Heriberto Marquez
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
13
|
Hoberecht L, Perampalam P, Lun A, Fortin JP. A comprehensive Bioconductor ecosystem for the design of CRISPR guide RNAs across nucleases and technologies. Nat Commun 2022; 13:6568. [PMID: 36323688 PMCID: PMC9630310 DOI: 10.1038/s41467-022-34320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The success of CRISPR-mediated gene perturbation studies is highly dependent on the quality of gRNAs, and several tools have been developed to enable optimal gRNA design. However, these tools are not all adaptable to the latest CRISPR modalities or nucleases, nor do they offer comprehensive annotation methods for advanced CRISPR applications. Here, we present a new ecosystem of R packages, called crisprVerse, that enables efficient gRNA design and annotation for a multitude of CRISPR technologies. This includes CRISPR knockout (CRISPRko), CRISPR activation (CRISPRa), CRISPR interference (CRISPRi), CRISPR base editing (CRISPRbe) and CRISPR knockdown (CRISPRkd). The core package, crisprDesign, offers a user-friendly and unified interface to add off-target annotations, rich gene and SNP annotations, and on- and off-target activity scores. These functionalities are enabled for any RNA- or DNA-targeting nucleases, including Cas9, Cas12, and Cas13. The crisprVerse ecosystem is open-source and deployed through the Bioconductor project ( https://github.com/crisprVerse ).
Collapse
Affiliation(s)
- Luke Hoberecht
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | | | - Aaron Lun
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jean-Philippe Fortin
- Genentech Research and Early Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
14
|
Mattiello L, Rütgers M, Sua-Rojas MF, Tavares R, Soares JS, Begcy K, Menossi M. Molecular and Computational Strategies to Increase the Efficiency of CRISPR-Based Techniques. FRONTIERS IN PLANT SCIENCE 2022; 13:868027. [PMID: 35712599 PMCID: PMC9194676 DOI: 10.3389/fpls.2022.868027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
The prokaryote-derived Clustered Regularly Interspaced Palindromic Repeats (CRISPR)/Cas mediated gene editing tools have revolutionized our ability to precisely manipulate specific genome sequences in plants and animals. The simplicity, precision, affordability, and robustness of this technology have allowed a myriad of genomes from a diverse group of plant species to be successfully edited. Even though CRISPR/Cas, base editing, and prime editing technologies have been rapidly adopted and implemented in plants, their editing efficiency rate and specificity varies greatly. In this review, we provide a critical overview of the recent advances in CRISPR/Cas9-derived technologies and their implications on enhancing editing efficiency. We highlight the major efforts of engineering Cas9, Cas12a, Cas12b, and Cas12f proteins aiming to improve their efficiencies. We also provide a perspective on the global future of agriculturally based products using DNA-free CRISPR/Cas techniques. The improvement of CRISPR-based technologies efficiency will enable the implementation of genome editing tools in a variety of crop plants, as well as accelerate progress in basic research and molecular breeding.
Collapse
Affiliation(s)
- Lucia Mattiello
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Mark Rütgers
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Maria Fernanda Sua-Rojas
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Rafael Tavares
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - José Sérgio Soares
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL, United States
| | - Marcelo Menossi
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
15
|
Hua K, Han P, Zhu JK. Improvement of base editors and prime editors advances precision genome engineering in plants. PLANT PHYSIOLOGY 2022; 188:1795-1810. [PMID: 34962995 PMCID: PMC8968349 DOI: 10.1093/plphys/kiab591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 05/11/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas)-mediated gene disruption has revolutionized biomedical research as well as plant and animal breeding. However, most disease-causing mutations and agronomically important genetic variations are single base polymorphisms (single-nucleotide polymorphisms) that require precision genome editing tools for correction of the sequences. Although homology-directed repair of double-stranded breaks (DSBs) can introduce precise changes, such repairs are inefficient in differentiated animal and plant cells. Base editing and prime editing are two recently developed genome engineering approaches that can efficiently introduce precise edits into target sites without requirement of DSB formation or donor DNA templates. They have been applied in several plant species with promising results. Here, we review the extensive literature on improving the efficiency, target scope, and specificity of base editors and prime editors in plants. We also highlight recent progress on base editing in plant organellar genomes and discuss how these precision genome editing tools are advancing basic plant research and crop breeding.
Collapse
Affiliation(s)
- Kai Hua
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| | - Peijin Han
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, China
| |
Collapse
|
16
|
da Costa BL, Levi SR, Eulau E, Tsai YT, Quinn PMJ. Prime Editing for Inherited Retinal Diseases. Front Genome Ed 2021; 3:775330. [PMID: 34901928 PMCID: PMC8656220 DOI: 10.3389/fgeed.2021.775330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal diseases (IRDs) are chronic, hereditary disorders that lead to progressive degeneration of the retina. Disease etiology originates from a genetic mutation-inherited or de novo-with a majority of IRDs resulting from point mutations. Given the plethora of IRDs, to date, mutations that cause these dystrophies have been found in approximately 280 genes. However, there is currently only one FDA-approved gene augmentation therapy, Luxturna (voretigene neparvovec-rzyl), available to patients with RPE65-mediated retinitis pigmentosa (RP). Although clinical trials for other genes are underway, these techniques typically involve gene augmentation rather than genome surgery. While gene augmentation therapy delivers a healthy copy of DNA to the cells of the retina, genome surgery uses clustered regularly interspaced short palindromic repeats (CRISPR)-based technology to correct a specific genetic mutation within the endogenous genome sequence. A new technique known as prime editing (PE) applies a CRISPR-based technology that possesses the potential to correct all twelve possible transition and transversion mutations as well as small insertions and deletions. EDIT-101, a CRISPR-based therapy that is currently in clinical trials, uses double-strand breaks and nonhomologous end joining to remove the IVS26 mutation in the CEP290 gene. Preferably, PE does not cause double-strand breaks nor does it require any donor DNA repair template, highlighting its unparalleled efficiency. Instead, PE uses reverse transcriptase and Cas9 nickase to repair mutations in the genome. While this technique is still developing, with several challenges yet to be addressed, it offers promising implications for the future of IRD treatment.
Collapse
Affiliation(s)
- Bruna Lopes da Costa
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Sarah R. Levi
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
| | - Eric Eulau
- College of Arts and Sciences, Syracuse University, New York, NY, United States
| | - Yi-Ting Tsai
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Peter M. J. Quinn
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
17
|
Molla KA, Sretenovic S, Bansal KC, Qi Y. Precise plant genome editing using base editors and prime editors. NATURE PLANTS 2021; 7:1166-1187. [PMID: 34518669 DOI: 10.1038/s41477-021-00991-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 05/06/2023]
Abstract
The development of CRISPR-Cas systems has sparked a genome editing revolution in plant genetics and breeding. These sequence-specific RNA-guided nucleases can induce DNA double-stranded breaks, resulting in mutations by imprecise non-homologous end joining (NHEJ) repair or precise DNA sequence replacement by homology-directed repair (HDR). However, HDR is highly inefficient in many plant species, which has greatly limited precise genome editing in plants. To fill the vital gap in precision editing, base editing and prime editing technologies have recently been developed and demonstrated in numerous plant species. These technologies, which are mainly based on Cas9 nickases, can introduce precise changes into the target genome at a single-base resolution. This Review provides a timely overview of the current status of base editors and prime editors in plants, covering both technological developments and biological applications.
Collapse
Affiliation(s)
- Kutubuddin A Molla
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India.
| | - Simon Sretenovic
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Kailash C Bansal
- The Alliance of Bioversity International and the International Centre for Tropical Agriculture, Asia-India, New Delhi, India
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
| |
Collapse
|
18
|
Lin Q, Jin S, Zong Y, Yu H, Zhu Z, Liu G, Kou L, Wang Y, Qiu JL, Li J, Gao C. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat Biotechnol 2021; 39:923-927. [PMID: 33767395 DOI: 10.1038/s41587-021-00868-w] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
Prime editing (PE) applications are limited by low editing efficiency. Here we show that designing prime binding sites with a melting temperature of 30 °C leads to optimal performance in rice and that using two prime editing guide (peg) RNAs in trans encoding the same edits substantially enhances PE efficiency. Together, these approaches boost PE efficiency from 2.9-fold to 17.4-fold. Optimal pegRNAs or pegRNA pairs can be designed with our web application, PlantPegDesigner.
Collapse
Affiliation(s)
- Qiupeng Lin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuai Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zixu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Guanwen Liu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liquan Kou
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yanpeng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Plant Genomics, and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Standage-Beier K, Tekel SJ, Brafman DA, Wang X. Prime Editing Guide RNA Design Automation Using PINE-CONE. ACS Synth Biol 2021; 10:422-427. [PMID: 33464043 PMCID: PMC7901017 DOI: 10.1021/acssynbio.0c00445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/18/2022]
Abstract
CRISPR-based technologies are paramount in genome engineering and synthetic biology. Prime editing (PE) is a technology capable of installing genomic edits without double-stranded DNA breaks (DSBs) or donor DNA. Prime editing guide RNAs (pegRNAs) simultaneously encode both guide and edit template sequences. They are more design intensive than CRISPR single guide RNAs (sgRNAs). As such, application of PE technology is hindered by the limited throughput of manual pegRNA design. To that end, we designed a software tool, Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE), that enables high-throughput automated design of pegRNAs and prime editing strategies. PINE-CONE translates edit coordinates and sequences into pegRNA designs, accessory guides, and oligonucleotides for facile cloning workflows. To demonstrate PINE-CONE's utility in studying disease-relevant genotypes, we rapidly design a library of pegRNAs targeting Alzheimer's Disease single nucleotide polymorphisms (SNPs). Overall, PINE-CONE will accelerate the application of PEs in synthetic biology and biomedical research.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School
of Biological and Health Systems Engineering, Molecular and Cellular Biology
Graduate Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Stefan J. Tekel
- School
of Biological and Health Systems Engineering, Molecular and Cellular Biology
Graduate Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - David A. Brafman
- School
of Biological and Health Systems Engineering, Molecular and Cellular Biology
Graduate Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiao Wang
- School
of Biological and Health Systems Engineering, Molecular and Cellular Biology
Graduate Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
20
|
Bosch JA, Birchak G, Perrimon N. Precise genome engineering in Drosophila using prime editing. Proc Natl Acad Sci U S A 2021; 118:e2021996118. [PMID: 33443210 PMCID: PMC7817132 DOI: 10.1073/pnas.2021996118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Precise genome editing is a valuable tool to study gene function in model organisms. Prime editing, a precise editing system developed in mammalian cells, does not require double-strand breaks or donor DNA and has low off-target effects. Here, we applied prime editing for the model organism Drosophila melanogaster and developed conditions for optimal editing. By expressing prime editing components in cultured cells or somatic cells of transgenic flies, we precisely introduce premature stop codons in three classical visible marker genes, ebony, white, and forked Furthermore, by restricting editing to germ cells, we demonstrate efficient germ-line transmission of a precise edit in ebony to 36% of progeny. Our results suggest that prime editing is a useful system in Drosophila to study gene function, such as engineering precise point mutations, deletions, or epitope tags.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
| | - Gabriel Birchak
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
- HHMI, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
|
22
|
Porto EM, Komor AC, Slaymaker IM, Yeo GW. Base editing: advances and therapeutic opportunities. Nat Rev Drug Discov 2020; 19:839-859. [PMID: 33077937 PMCID: PMC7721651 DOI: 10.1038/s41573-020-0084-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2020] [Indexed: 12/19/2022]
Abstract
Base editing - the introduction of single-nucleotide variants (SNVs) into DNA or RNA in living cells - is one of the most recent advances in the field of genome editing. As around half of known pathogenic genetic variants are due to SNVs, base editing holds great potential for the treatment of numerous genetic diseases, through either temporary RNA or permanent DNA base alterations. Recent advances in the specificity, efficiency, precision and delivery of DNA and RNA base editors are revealing exciting therapeutic opportunities for these technologies. We expect the correction of single point mutations will be a major focus of future precision medicine.
Collapse
Affiliation(s)
- Elizabeth M Porto
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Ian M Slaymaker
- Synthetic Biology Department, Beam Therapeutics, Cambridge, MA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences and Bioinformatics and Systems Biology Graduate Programs, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Affiliation(s)
- Svetlana A Smirnikhina
- Laboratory of Genome Editing, Research Centre for Medical Genetics, Moscow, Russian Federation
| |
Collapse
|