1
|
Koch M, Ferrarese L, Ben-Yehuda Greenwald M, Werner S. Dose-dependent effects of Nrf2 on the epidermis in chronic skin inflammation. Dis Model Mech 2025; 18:dmm052126. [PMID: 39744884 PMCID: PMC11708820 DOI: 10.1242/dmm.052126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms. Proteomics analysis of their epidermis revealed reduced Nrf2 activity. This was accompanied by an increase in DNA damage and in the number of senescent cells. Genetic deletion of Nrf2 in keratinocytes of these mice further promoted DNA damage and senescence, but time-limited pharmacological activation of Nrf2 in the skin had a mild protective effect. Surprisingly, long-term genetic activation of Nrf2 in keratinocytes of K5-R1/R2 mice caused strong hyperkeratosis, keratinocyte hyperproliferation, epidermal thickening, increased keratinocyte apoptosis and DNA damage, and altered immune cell composition. These results reveal a complex role of Nrf2 in the epidermis and show the necessity to optimize the duration and intensity of NRF2 activation for the treatment of epidermal alterations in patients with AD.
Collapse
Affiliation(s)
- Michael Koch
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Luca Ferrarese
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Sänger CS, Cernakova M, Wietecha MS, Garau Paganella L, Labouesse C, Dudaryeva OY, Roubaty C, Stumpe M, Mazza E, Tibbitt MW, Dengjel J, Werner S. Serine protease 35 regulates the fibroblast matrisome in response to hyperosmotic stress. SCIENCE ADVANCES 2023; 9:eadh9219. [PMID: 37647410 PMCID: PMC10468140 DOI: 10.1126/sciadv.adh9219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Hyperosmotic stress occurs in several diseases, but its long-term effects are largely unknown. We used sorbitol-treated human fibroblasts in 3D culture to study the consequences of hyperosmotic stress in the skin. Sorbitol regulated many genes, which help cells cope with the stress condition. The most robustly regulated gene encodes serine protease 35 (PRSS35). Its regulation by hyperosmotic stress was dependent on the kinases p38 and JNK and the transcription factors NFAT5 and ATF2. We identified different collagens and collagen-associated proteins as putative PRSS35 binding partners. This is functionally important because PRSS35 affected the extracellular matrix proteome, which limited cell proliferation. The in vivo relevance of these findings is reflected by the coexpression of PRSS35 and its binding partners in human skin wounds, where hyperosmotic stress occurs as a consequence of excessive water loss. These results identify PRSS35 as a key regulator of the matrisome under hyperosmotic stress conditions.
Collapse
Affiliation(s)
- Catharina S. Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Mateusz S. Wietecha
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lorenza Garau Paganella
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Oksana Y. Dudaryeva
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Carole Roubaty
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Mark W. Tibbitt
- Institute for Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Jörn Dengjel
- Faculty of Science and Medicine, Department of Biology, University of Fribourg, Ch. du Musée 10, 1700 Fribourg, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
4
|
Crossman SH, Janovjak H. Light-activated receptor tyrosine kinases: Designs and applications. Curr Opin Pharmacol 2022; 63:102197. [PMID: 35245796 DOI: 10.1016/j.coph.2022.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/03/2022]
Abstract
Receptor tyrosine kinases (RTKs) are a large and essential membrane receptor family. The molecular mechanisms and physiological consequences of RTK activation depend on, for example, ligand identity, subcellular localization, and developmental or disease stage. In the past few years, genetically-encoded light-activated RTKs (Opto-RTKs) have been developed to dissect these complexities by providing reversible and spatio-temporal control over cell signaling. These methods have very recently matured to include highly-sensitive multi-color actuators. The new ability to regulate RTK activity with high precision has been recently harnessed to gain mechanistic insights in subcellular, tissue, and animal models. Because of their sophisticated engineering, Opto-RTKs may only mirror some aspects of natural activation mechanisms but nevertheless offer unique opportunities to study RTK signaling and physiology.
Collapse
Affiliation(s)
- Samuel H Crossman
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia
| | - Harald Janovjak
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia; European Molecular Biology Laboratory Australia (EMBL Australia), Monash University, 15 Innovation Walk, Clayton, Victoria 3800, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia.
| |
Collapse
|
5
|
Lin F, Li R. MiR-1226, mediated by ASCL1, suppresses the progression of non-small cell lung cancer by targeting FGF2. Bull Cancer 2022; 109:424-435. [DOI: 10.1016/j.bulcan.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/16/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
|