1
|
Molinares M, Wolpert N, Gollahon L, Xu C. Effect of micropillar density on morphology and migration of low and high metastatic potential breast cancer cells. Colloids Surf B Biointerfaces 2024; 245:114214. [PMID: 39260275 DOI: 10.1016/j.colsurfb.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Study of cell migration in cancer is crucial to the comprehension of the processes and factors that govern tumor spread. Cancer cells migrate invading tissues, causing alterations in cell adhesion, cytoskeleton, and signaling pathways. Little is known about the physical attributes of cancer cells that change when interacting with microenvironments. In this work, the local topography of the ECM has been mimicked through micropillar array substrates. MDA-MB-231 and MCF-7 breast cancer cells, exhibiting high and low metastatic potential, respectively, were analyzed. Differences in morphology and migration of the cells were investigated by examining the cell spreading area, circularity, aspect ratio, migration speed, and migration path. This work encountered that none of the studied cell lines have preferential orientation migrating on uniform patterns. In contrast, cell migration on graded patterns shows preferential orientation along the longitudinal direction from sparser to denser zones which is significantly influenced by substrate stiffness and indicates that both cell lines can sense the spacing gradient and respond to this topographical cue. The migration speed of the breast cancer cell lines significantly decreases from the sparse to medium to dense zones, registering higher values for the MDA-MB-231.
Collapse
Affiliation(s)
- Marielena Molinares
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Changxue Xu
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Pan R, Lin C, Yang X, Xie Y, Gao L, Yu L. The influence of spheroid maturity on fusion dynamics and micro-tissue assembly in 3D tumor models. Biofabrication 2024; 16:035016. [PMID: 38663395 DOI: 10.1088/1758-5090/ad4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Three-dimensional (3D) cell culture has been used in many fields of biology because of its unique advantages. As a representative of the 3D systems, 3D spheroids are used as building blocks for tissue construction. Larger tumor aggregates can be assembled by manipulating or stacking the tumor spheroids. The motivation of this study is to investigate the behavior of the cells distributed at different locations of the spheroids in the fusion process and the mechanism behind it. To this aim, spheroids with varying grades of maturity or age were generated for fusion to assemble micro-tumor tissues. The dynamics of the fusion process, the motility of the cells distributed in different heterogeneous architecture sites, and their reactive oxygen species profiles were studied. We found that the larger the spheroid necrotic core, the slower the fusion rate of the spheroid. The cells that move were mainly distributed on the spheroid's surface during fusion. In addition to dense microfilament distribution and low microtubule content, the reactive oxygen content was high in the fusion site, while the non-fusion site was the opposite. Last, multi-spheroids with different maturities were fused to complex micro-tissues to mimic solid tumors and evaluate Doxorubicin's anti-tumor efficacy.
Collapse
Affiliation(s)
- Rong Pan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Chenyu Lin
- Institute for Developmental and Biology and Regenerative Medicine, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Xie
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Lixia Gao
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Ling Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
3
|
Baba RA, Mir HA, Mokhdomi TA, Bhat HF, Ahmad A, Khanday FA. Quercetin suppresses ROS production and migration by specifically targeting Rac1 activation in gliomas. Front Pharmacol 2024; 15:1318797. [PMID: 38362155 PMCID: PMC10867961 DOI: 10.3389/fphar.2024.1318797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024] Open
Abstract
P66Shc and Rac1 proteins are responsible for tumor-associated inflammation, particularly in brain tumors characterized by elevated oxidative stress and increased reactive oxygen species (ROS) production. Quercetin, a natural polyphenolic flavonoid, is a well-known redox modulator with anticancer properties. It has the capacity to cross the blood-brain barrier and, thus, could be a possible drug against brain tumors. In this study, we explored the effect of quercetin on Rac1/p66Shc-mediated tumor cell inflammation, which is the principal pathway for the generation of ROS in brain cells. Glioma cells transfected with Rac1, p66Shc, or both were treated with varying concentrations of quercetin for different time points. Quercetin significantly reduced the viability and migration of cells in an ROS-dependent manner with the concomitant inhibition of Rac1/p66Shc expression and ROS production in naïve and Rac1/p66Shc-transfected cell lines, suggestive of preventing Rac1 activation. Through molecular docking simulations, we observed that quercetin showed the best binding compared to other known Rac1 inhibitors and specifically blocked the GTP-binding site in the A-loop of Rac1 to prevent GTP binding and, thus, Rac1 activation. We conclude that quercetin exerts its anticancer effects via the modulation of Rac1-p66Shc signaling by specifically inhibiting Rac1 activation, thus restraining the production of ROS and tumor growth.
Collapse
Affiliation(s)
- Rafia A. Baba
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Cancer Diagnostic & Research Centre, Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - Hilal A. Mir
- Department of Biotechnology, University of Kashmir, Srinagar, India
- Departments of Ophthalmology, Columbia University, New York, NY, United States
| | | | - Hina F. Bhat
- Department of Biotechnology, University of Kashmir, Srinagar, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
4
|
Arfin S, Kumar D, Lomagno A, Mauri PL, Di Silvestre D. Differentially Expressed Genes, miRNAs and Network Models: A Strategy to Shed Light on Molecular Interactions Driving HNSCC Tumorigenesis. Cancers (Basel) 2023; 15:4420. [PMID: 37686696 PMCID: PMC10563081 DOI: 10.3390/cancers15174420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer worldwide, accounting for hundreds thousands deaths annually. Unfortunately, most patients are diagnosed in an advanced stage and only a percentage respond favorably to therapies. To help fill this gap, we hereby propose a retrospective in silico study to shed light on gene-miRNA interactions driving the development of HNSCC. Moreover, to identify topological biomarkers as a source for designing new drugs. To achieve this, gene and miRNA profiles from patients and controls are holistically reevaluated using protein-protein interaction (PPI) and bipartite miRNA-target networks. Cytoskeletal remodeling, extracellular matrix (ECM), immune system, proteolysis, and energy metabolism have emerged as major functional modules involved in the pathogenesis of HNSCC. Of note, the landscape of our findings depicts a concerted molecular action in activating genes promoting cell cycle and proliferation, and inactivating those suppressive. In this scenario, genes, including VEGFA, EMP1, PPL, KRAS, MET, TP53, MMPs and HOXs, and miRNAs, including mir-6728 and mir-99a, emerge as key players in the molecular interactions driving HNSCC tumorigenesis. Despite the heterogeneity characterizing these HNSCC subtypes, and the limitations of a study pointing to relationships that could be context dependent, the overlap with previously published studies is encouraging. Hence, it supports further investigation for key molecules, both those already and not correlated to HNSCC.
Collapse
Affiliation(s)
- Saniya Arfin
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Dhruv Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttrakhand, India; (S.A.); (D.K.)
| | - Andrea Lomagno
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
- IRCCS Foundation, Istituto Nazionale dei Tumori, Via Venezian, 1, 20133 Milan, Italy
| | - Pietro Luigi Mauri
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| | - Dario Di Silvestre
- Institute for Biomedical Technologies, National Research Council, F.lli Cervi 93, Segrate, 20054 Milan, Italy; (A.L.); (P.L.M.)
| |
Collapse
|
5
|
Piciu F, Balas M, Badea MA, Cucu D. TRP Channels in Tumoral Processes Mediated by Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:1327. [PMID: 37507867 PMCID: PMC10376197 DOI: 10.3390/antiox12071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The channels from the superfamily of transient receptor potential (TRP) activated by reactive oxygen species (ROS) can be defined as redox channels. Those with the best exposure of the cysteine residues and, hence, the most sensitive to oxidative stress are TRPC4, TRPC5, TRPV1, TRPV4, and TRPA1, while others, such as TRPC3, TRPM2, and TRPM7, are indirectly activated by ROS. Furthermore, activation by ROS has different effects on the tumorigenic process: some TRP channels may, upon activation, stimulate proliferation, apoptosis, or migration of cancer cells, while others inhibit these processes, depending on the cancer type, tumoral microenvironment, and, finally, on the methods used for evaluation. Therefore, using these polymodal proteins as therapeutic targets is still an unmet need, despite their draggability and modulation by simple and mostly unharmful compounds. This review intended to create some cellular models of the interaction between oxidative stress, TRP channels, and inflammation. Although somewhat crosstalk between the three actors was rather theoretical, we intended to gather the recently published data and proposed pathways of cancer inhibition using modulators of TRP proteins, hoping that the experimental data corroborated clinical information may finally bring the results from the bench to the bedside.
Collapse
Affiliation(s)
- Florentina Piciu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Madalina Andreea Badea
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 90-92 Sos. Panduri, 050663 Bucharest, Romania
| | - Dana Cucu
- Department of Anatomy, Animal Physiology and Biophysics (DAFAB), Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|