1
|
Sabatini PJB, Bridgers J, Huang S, Downs G, Zhang T, Sheen C, Park N, Kridel R, Marra MA, Steidl C, Scott DW, Karsan A. Multisite clinical cross-validation and variant interpretation of a next generation sequencing panel for lymphoid cancer prognostication. J Clin Pathol 2025; 78:187-194. [PMID: 38182402 DOI: 10.1136/jcp-2023-209262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
AIMS Genomic sequencing of lymphomas is under-represented in routine clinical testing despite having prognostic and predictive value. Clinical implementation is challenging due to a lack of consensus on reportable targets and a paucity of reference samples. We organised a cross-validation study of a lymphoma-tailored next-generation sequencing panel between two College of American Pathologists (CAP)-accredited clinical laboratories to mitigate these challenges. METHODS A consensus for the genomic targets was discussed between the two institutes based on recurrence in diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukaemia and T-cell lymphomas. Using the same genomic targets, each laboratory ordered libraries independently and a cross-validation study was designed to exchange samples (8 cell lines and 22 clinical samples) and their FASTQ files. RESULTS The sensitivity of the panel when comparing different library preparation and bioinformatic workflows was between 97% and 99% and specificity was 100% when a 5% limit of detection cut-off was applied. To evaluate how the current standards for variant classification of tumours apply to lymphomas, the Association for Molecular Pathology/American Society of Clinical Oncology/CAP and OncoKB classification systems were applied to the panel. The majority of variants were assigned a possibly actionable class or likely pathogenic due to more limited evidence in the literature. CONCLUSIONS The cross-validation study highlights the benefits of sample and data exchange for clinical validation and provided a framework for reporting the findings in lymphoid malignancies.
Collapse
Affiliation(s)
- Peter J B Sabatini
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Josh Bridgers
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Shujun Huang
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Gregory Downs
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tong Zhang
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Clare Sheen
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nicole Park
- Advanced Molecular Diagnostic Laboratory, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Robert Kridel
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Marco A Marra
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | | | - David W Scott
- Centre for Lymphoid Cancer, Vancouver, British Columbia, Canada
| | - Aly Karsan
- BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Yi W, Dziadowicz SA, Mangano RS, Wang L, McBee J, Frisch SM, Hazlehurst LA, Adjeroh DA, Hu G. Molecular Signatures of CB-6644 Inhibition of the RUVBL1/2 Complex in Multiple Myeloma. Int J Mol Sci 2024; 25:9022. [PMID: 39201707 PMCID: PMC11354775 DOI: 10.3390/ijms25169022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple myeloma is the second most hematological cancer. RUVBL1 and RUVBL2 form a subcomplex of many chromatin remodeling complexes implicated in cancer progression. As an inhibitor specific to the RUVBL1/2 complex, CB-6644 exhibits remarkable anti-tumor activity in xenograft models of Burkitt's lymphoma and multiple myeloma (MM). In this work, we defined transcriptional signatures corresponding to CB-6644 treatment in MM cells and determined underlying epigenetic changes in terms of chromatin accessibility. CB-6644 upregulated biological processes related to interferon response and downregulated those linked to cell proliferation in MM cells. Transcriptional regulator inference identified E2Fs as regulators for downregulated genes and MED1 and MYC as regulators for upregulated genes. CB-6644-induced changes in chromatin accessibility occurred mostly in non-promoter regions. Footprinting analysis identified transcription factors implied in modulating chromatin accessibility in response to CB-6644 treatment, including ATF4/CEBP and IRF4. Lastly, integrative analysis of transcription responses to various chemical compounds of the molecular signature genes from public gene expression data identified CB-5083, a p97 inhibitor, as a synergistic candidate with CB-6644 in MM cells, but experimental validation refuted this hypothesis.
Collapse
Affiliation(s)
- Weijun Yi
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Rachel S. Mangano
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- Division of Clinical Pharmacology, Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lei Wang
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Joseph McBee
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
| | - Steven M. Frisch
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morganton, WV 26506, USA;
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Donald A. Adjeroh
- Lane Department of Computer Science & Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University, Morgantown, WV 26505, USA; (W.Y.); (S.A.D.); (R.S.M.); (L.W.); (J.M.)
- WVU Cancer Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Quivoron C, Michot JM, Danu A, Lecourt H, Saada V, Saleh K, Vergé V, Cotteret S, Bernard OA, Ribrag V. Sensitivity, specificity, and accuracy of molecular profiling on circulating cell-free DNA in refractory or relapsed multiple myeloma patients, results of MM-EP1 study. Leuk Lymphoma 2024; 65:789-799. [PMID: 38433500 DOI: 10.1080/10428194.2024.2320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
As a promising alternative to bone marrow aspiration (BMA), mutational profiling on blood-derived circulating cell-free tumor DNA (cfDNA) is a harmless and simple technique to monitor molecular response and treatment resistance of patients with refractory/relapsed multiple myeloma (R/R MM). We evaluated the sensitivity and specificity of cfDNA compared to BMA CD138 positive myeloma plasma cells (PCs) in a series of 45 R/R MM patients using the 29-gene targeted panel (AmpliSeq) NGS. KRAS, NRAS, FAM46C, DIS3, and TP53 were the most frequently mutated genes. The average sensitivity and specificity of cfDNA detection were 65% and 97%, respectively. The concordance per gene between the two samples was good to excellent according to Cohen's κ coefficients interpretation. An increased number of mutations detected in cfDNA were associated with a decreased overall survival. In conclusion, we demonstrated cfDNA NGS analysis feasibility and accuracy in R/R MM patients who may benefit from early phase clinical trial.
Collapse
Affiliation(s)
- C Quivoron
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - J-M Michot
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
| | - A Danu
- Hematology Department, Gustave Roussy, Villejuif, France
| | - H Lecourt
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Saada
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - K Saleh
- Hematology Department, Gustave Roussy, Villejuif, France
| | - V Vergé
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - S Cotteret
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - O A Bernard
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
| | - V Ribrag
- Translational Hematology Laboratory, AMMICa, INSERM US23/CNRS UAR3655, Gustave Roussy Cancer Campus, Villejuif, France
- INSERM U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus, Villejuif, France
- Drug Development Department: Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Villejuif, France
- Hematology Department, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Li J, Chin CR, Ying HY, Meydan C, Teater MR, Xia M, Farinha P, Takata K, Chu CS, Jiang Y, Eagles J, Passerini V, Tang Z, Rivas MA, Weigert O, Pugh TJ, Chadburn A, Steidl C, Scott DW, Roeder RG, Mason CE, Zappasodi R, Béguelin W, Melnick AM. Loss of CREBBP and KMT2D cooperate to accelerate lymphomagenesis and shape the lymphoma immune microenvironment. Nat Commun 2024; 15:2879. [PMID: 38570506 PMCID: PMC10991284 DOI: 10.1038/s41467-024-47012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.
Collapse
Affiliation(s)
- Jie Li
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher R Chin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Hsia-Yuan Ying
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Matthew R Teater
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Min Xia
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pedro Farinha
- BC Cancer Centre for Lymphoid Cancer, Department of Pathology and Laboratorial Medicine, University of British Columbia, Vancouver, Canada
| | - Katsuyoshi Takata
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Yiyue Jiang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Verena Passerini
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Zhanyun Tang
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Martin A Rivas
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Oliver Weigert
- Department of Medicine III, Laboratory for Experimental Leukemia and Lymphoma Research (ELLF), Ludwig-Maximilians University (LMU) Hospital, Munich, Germany
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, Canada
| | - David W Scott
- BC Cancer Centre for Lymphoid Cancer, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Zappasodi
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
5
|
Akcora-Yildiz D, Gonulkirmaz N, Ozkan T, Beksac M, Sunguroglu A. HIV-1 integrase inhibitor raltegravir promotes DNA damage-induced apoptosis in multiple myeloma. Chem Biol Drug Des 2023; 102:262-270. [PMID: 37094820 DOI: 10.1111/cbdd.14237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 03/16/2023] [Indexed: 04/26/2023]
Abstract
Raltegravir, the first integrase inhibitor approved for the treatment of HIV infection, has been implicated as a promising potential in cancer treatment. Therefore, the present study aimed to investigate the repurposing of raltegravir as an anticancer agent and its mechanism of action in multiple myeloma (MM). Human MM cell lines (RPMI-8226, NCI H929, and U266) and normal peripheral blood mononuclear cells (PBMCs) were cultured with different concentrations of raltegravir for 48 and 72 h. Cell viability and apoptosis were then measured by MTT and Annexin V/PI assays, respectively. Protein levels of cleaved PARP, Bcl-2, Beclin-1, and phosphorylation of histone H2AX were detected by Western blotting. In addition, the mRNA levels of V(D)J recombination and DNA repair genes were analyzed using qPCR. Raltegravir treatment for 72 h significantly decreased cell viability, increased apoptosis, and DNA damage in MM cells while having minimum toxicity on cell viability of normal PBMCs approximately from 200 nM (0.2 μM; p < .01 for U66 and p < .0001 for NCI H929 and RPMI 8226 cells). Furthermore, raltegravir treatment altered the mRNA levels of V(D)J recombination and DNA repair genes. We report for the first time that treatment with raltegravir is associated with decreased cell viability, apoptosis induction, DNA damage accumulation, and alteration of mRNA expression of genes involved in V(D)J recombination and DNA repair in MM cell lines, all of which show its potential for anti-myeloma effects. Hence, raltegravir may significantly impact the treatment of MM, and further studies are required to confirm its efficacy and mechanism of action in more detail in patient-derived myeloma cells and in-vivo models.
Collapse
Affiliation(s)
- Dilara Akcora-Yildiz
- Department of Biology, Art & Science Faculty, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Nurbanu Gonulkirmaz
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Meral Beksac
- Department of Hematology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
6
|
Ng E, Dobrica MO, Harris JM, Wu Y, Tsukuda S, Wing PAC, Piazza P, Balfe P, Matthews PC, Ansari MA, McKeating JA. An enrichment protocol and analysis pipeline for long read sequencing of the hepatitis B virus transcriptome. J Gen Virol 2023; 104:001856. [PMID: 37196057 PMCID: PMC10845048 DOI: 10.1099/jgv.0.001856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
Hepatitis B virus (HBV) is one of the smallest human DNA viruses and its 3.2 Kb genome encodes multiple overlapping open reading frames, making its viral transcriptome challenging to dissect. Previous studies have combined quantitative PCR and Next Generation Sequencing to identify viral transcripts and splice junctions, however the fragmentation and selective amplification used in short read sequencing precludes the resolution of full length RNAs. Our study coupled an oligonucleotide enrichment protocol with state-of-the-art long read sequencing (PacBio) to identify the repertoire of HBV RNAs. This methodology provides sequencing libraries where up to 25 % of reads are of viral origin and enable the identification of canonical (unspliced), non-canonical (spliced) and chimeric viral-human transcripts. Sequencing RNA isolated from de novo HBV infected cells or those transfected with 1.3 × overlength HBV genomes allowed us to assess the viral transcriptome and to annotate 5' truncations and polyadenylation profiles. The two HBV model systems showed an excellent agreement in the pattern of major viral RNAs, however differences were noted in the abundance of spliced transcripts. Viral-host chimeric transcripts were identified and more commonly found in the transfected cells. Enrichment capture and PacBio sequencing allows the assignment of canonical and non-canonical HBV RNAs using an open-source analysis pipeline that enables the accurate mapping of the HBV transcriptome.
Collapse
Affiliation(s)
- Esther Ng
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mihaela-Olivia Dobrica
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Present address: Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yanxia Wu
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philippa C. Matthews
- The Francis Crick Institute, London, UK
- Division of Infection and Immunity, University College London, London, UK
| | - M. Azim Ansari
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|