1
|
Holý P, Hlaváč V, Šeborová K, Šůsová S, Tesařová T, Rob L, Hruda M, Bouda J, Bartáková A, Mrhalová M, Kopečková K, Al Obeed Allah M, Špaček J, Sedláková I, Souček P, Václavíková R. Targeted DNA sequencing of high-grade serous ovarian carcinoma reveals association of TP53 mutations with platinum resistance when combined with gene expression. Int J Cancer 2024; 155:104-116. [PMID: 38447012 DOI: 10.1002/ijc.34908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%). Somatically, the most mutated gene was TP53 (98%), followed by CSMD1/2/3 (19/19/36%), and CFTR (23%). Results were compared with those from whole exome sequencing of a similar set of 35 HGSC patients. Somatic variants in TP53 were also validated using GENIE data of 1287 HGSC samples. Our approach showed increased prevalence of high impact somatic and germline mutations, especially those affecting splice sites of TP53, compared to validation datasets. Furthermore, nonsense TP53 somatic mutations were negatively associated with patient survival. Elevated TP53 transcript levels were associated with platinum resistance and presence of TP53 missense mutations, while decreased TP53 levels were found in tumors carrying mutations with predicted high impact, which was confirmed in The Cancer Genome Atlas data (n = 260). Targeted DNA sequencing of TP53 combined with transcript quantification may contribute to the concept of precision oncology of HGSC. Future studies should explore targeting the p53 pathway based on specific mutation types and co-analyze the expression and mutational profiles of other key cancer genes.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Simona Šůsová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Tesařová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukáš Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jiří Bouda
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Bartáková
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mohammad Al Obeed Allah
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Špaček
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Iva Sedláková
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
2
|
Cao Y, Wu S, Gu Y, Wong YH, Shi Y, Zhang L. Disulfidptosis-related PABPC3 promotes tumor progression and inhibits immune activity in osteosarcoma. J Gene Med 2024; 26:e3641. [PMID: 38058264 DOI: 10.1002/jgm.3641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Osteosarcoma is a very aggressive bone tumor mainly affecting teens and young adults. Disulfidptosis is a metabolic-related form of regulated cell death. However, the interconnection between disulfidptosis and osteosarcoma has not been explored. METHODS In the present study, disulfidptosis-related clusters were identified in osteosarcoma using the nonnegative matrix factorization clustering method. PABPC3 was identified as a hazardous gene in osteosarcoma using machine learning algorithms, CoxBoost, and Random Survival Forest. The prognostic value, pathway annotation, immune characteristics, and drug prediction of PABPC3 were systematically explored. MTT (i.e., 3-(4, 5-dimethyl thiazol-2-yl)-2,5-diphenytetrazolium bromide), EdU (ie. 5-ethyny-2'-deoxvuridine), and Transwell assays were used for in vitro validation of PABPC3. RESULTS The disulfidptosis-related clusters could distinguish survival outcomes of osteosarcoma patients. PABPC3 could predict survival outcomes, immune activity, and drug response in osteosarcoma patients. Besides, PABPC3 was proven to facilitate the proliferation and migration of osteosarcoma. CONCLUSIONS The present study is expected to establish the bridge between disulfidptosis and osteosarcoma. PABPC3 is expected to be further explored as a therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Yangbo Cao
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yishan Gu
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yung Hou Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanbin Shi
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Department of Orthopaedics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Heczko L, Hlaváč V, Holý P, Dvořák P, Liška V, Vyčítal O, Fiala O, Souček P. Prognostic potential of whole exome sequencing in the clinical management of metachronous colorectal cancer liver metastases. Cancer Cell Int 2023; 23:295. [PMID: 38008721 PMCID: PMC10676609 DOI: 10.1186/s12935-023-03135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Colorectal cancer is a highly prevalent and deadly. The most common metastatic site is the liver. We performed a whole exome sequencing analysis of a series of metachronous colorectal cancer liver metastases (mCLM) and matched non-malignant liver tissues to investigate the genomic profile of mCLM and explore associations with the patients' prognosis and therapeutic modalities. METHODS DNA samples from mCLM and non-malignant liver tissue pairs (n = 41) were sequenced using whole exome target enrichment and their germline and somatic genetic variability, copy number variations, and mutational signatures were assessed for associations with relapse-free (RFS) and overall survival (OS). RESULTS Our genetic analysis could stratify all patients into existing targeted therapeutic regimens. The most commonly mutated genes in mCLM were TP53, APC, and KRAS together with PIK3CA and several passenger genes like ABCA13, FAT4, PCLO, and UNC80. Patients with somatic alterations in genes from homologous recombination repair, Notch, and Hedgehog pathways had significantly prolonged RFS, while those with altered MYC pathway genes had poor RFS. Additionally, alterations in the JAK-STAT pathway were prognostic of longer OS. Patients bearing somatic variants in VIPR2 had significantly shorter OS and those with alterations in MUC16 prolonged OS. Carriage of the KRAS-12D variant was associated with shortened survival in our and external datasets. On the other hand, tumor mutation burden, mismatch repair deficiency, microsatellite instability, mutational signatures, or copy number variation in mCLM had no prognostic value. CONCLUSIONS The results encourage further molecular profiling for personalized treatment of colorectal cancer liver metastases discerning metachronous from synchronous scenarios.
Collapse
Affiliation(s)
- Lucie Heczko
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
| | - Viktor Hlaváč
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Petr Holý
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Pavel Dvořák
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondřej Vyčítal
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondřej Fiala
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Pavel Souček
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, 306 05, Czech Republic.
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.
| |
Collapse
|