1
|
Purohit G, Ghosh P, Khalimonchuk O. Mitochondrial metallopeptidase OMA1 in cancer. Adv Cancer Res 2024; 162:75-97. [PMID: 39069370 DOI: 10.1016/bs.acr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Our understanding of the roles that mitochondria play in cellular physiology has evolved drastically-from a mere cellular energy supplier to a crucial regulator of metabolic and signaling processes, particularly in the context of development and progression of human diseases such as cancers. The present review examines the role of OMA1, a conserved, redox-sensitive metallopeptidase in cancer biology. OMA1's involvement in mitochondrial quality control, redox activity, and stress responses underscores its potential as a novel target in cancer diagnosis and treatment. However, our incomplete understanding of OMA1's regulation and structural detail presents ongoing challenges to target OMA1 for therapeutic purposes. Further exploration of OMA1 holds promise in uncovering novel insights into cancer mechanisms and therapeutic strategies. In this chapter, we briefly summarize our current knowledge about OMA1, its redox-regulation, and emerging role in certain cancers.
Collapse
Affiliation(s)
- Gunjan Purohit
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Polash Ghosh
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States; Nebraska Redox Biology Center, Lincoln, NE, United States; Fred & Pamela Buffett Cancer Center, Omaha, NE, United States.
| |
Collapse
|
2
|
Miallot R, Millet V, Roger A, Fenouil R, Tardivel C, Martin JC, Tranchida F, Shintu L, Berchard P, Sousa Lanza J, Malissen B, Henri S, Ugolini S, Dutour A, Finetti P, Bertucci F, Blay JY, Galland F, Naquet P. The coenzyme A precursor pantethine enhances antitumor immunity in sarcoma. Life Sci Alliance 2023; 6:e202302200. [PMID: 37833072 PMCID: PMC10583838 DOI: 10.26508/lsa.202302200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The tumor microenvironment is a dynamic network of stromal, cancer, and immune cells that interact and compete for resources. We have previously identified the Vanin1 pathway as a tumor suppressor of sarcoma development via vitamin B5 and coenzyme A regeneration. Using an aggressive sarcoma cell line that lacks Vnn1 expression, we showed that the administration of pantethine, a vitamin B5 precursor, attenuates tumor growth in immunocompetent but not nude mice. Pantethine boosts antitumor immunity, including the polarization of myeloid and dendritic cells towards enhanced IFNγ-driven antigen presentation pathways and improved the development of hypermetabolic effector CD8+ T cells endowed with potential antitumor activity. At later stages of treatment, the effect of pantethine was limited by the development of immune cell exhaustion. Nevertheless, its activity was comparable with that of anti-PD1 treatment in sensitive tumors. In humans, VNN1 expression correlates with improved survival and immune cell infiltration in soft-tissue sarcomas, but not in osteosarcomas. Pantethine could be a potential therapeutic immunoadjuvant for the development of antitumor immunity.
Collapse
Affiliation(s)
- Richard Miallot
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Virginie Millet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Anais Roger
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Romain Fenouil
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | | | | | | | - Laetitia Shintu
- CNRS, Centrale Marseille, ISM2, Aix Marseille Université, Marseille, France
| | - Paul Berchard
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Juliane Sousa Lanza
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Bernard Malissen
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
- INSERM, CNRS, Centre D'Immunophénomique (CIPHE), Aix Marseille Université, Marseille, France
| | - Sandrine Henri
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Sophie Ugolini
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Aurélie Dutour
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
| | - Pascal Finetti
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
| | - François Bertucci
- INSERM, CNRS, Centre de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes (IPC), Laboratory of Predictive Oncology, Aix-Marseille Université, Marseille, France
- Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Jean-Yves Blay
- INSERM 1052, CNRS 5286, Cancer Research Center of Lyon (CRCL), Childhood Cancers and Cell Death Laboratory, Lyon, France
- UNICANCER Centre Léon Bérard, Department of Medicine, Université Lyon I, Lyon, France
| | - Franck Galland
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| | - Philippe Naquet
- https://ror.org/03vyjkj45 INSERM, CNRS, Centre D'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille, France
| |
Collapse
|
3
|
Abass SA, Abdel-Hamid NM, Elshazly AM, Abdo W, Zakaria S. OMA1 and YME1L as a Diagnostic Panel in Hepatocellular Carcinoma. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:443-454. [PMID: 38161580 PMCID: PMC10751866 DOI: 10.59249/bwby8971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Identifying new hepatocellular carcinoma (HCC)-driven signaling molecules and discovering their molecular mechanisms are crucial for efficient and better outcomes. Recently, OMA1 and YME1L, the inner mitochondrial proteases, were displayed to be associated with tumor progression in various cancers; however, their role in HCC has not yet been studied. Therefore, we evaluated the possible role of OMA1/YME1L in HCC staging and discussed their potential role in cellular apoptosis and proliferation. Our study was performed using four groups of male albino rats: a normal control and three diethyl nitrosamine-treated groups for 8, 16, and 24 weeks. The OMA1 and YME1L, matrix-metalloproteinase-9 (MMP-9), and cyclin D1 content were measured in liver tissues, while alpha-fetoprotein (AFP) level was assessed in serum. Additionally, Ki-67 expression was evaluated by immunohistochemistry. The relative hepatic expression of Bax, and tissue inhibitor matrix metalloproteinase (TIMP-3) was measured. Herein, we confirmed for the first time that OMA1 is down-regulated while YME1L is up-regulated in HCC in the three studied stages with subsequent inhibition of apoptosis and cell cycle progression. Furthermore, these proteases have a possible role in metastasis. These newly recognized results suggested OMA1 and YME1L as possible diagnostic tools and therapeutic targets for HCC management.
Collapse
Affiliation(s)
- Shimaa A. Abass
- Biochemistry Department, Faculty of Pharmacy,
Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Ahmed M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of
Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
- Department of Pharmacology and Toxicology, Massey
Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary
Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of
Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|