1
|
Duranti C, Iorio J, Manganelli V, Bagni G, Colasurdo R, Lottini T, Martinelli M, Capitani C, Boso G, D'Alessandro FN, Sorice M, Becchetti A, Misasi R, Garofalo T, Arcangeli A. Targeting the hERG1/β1 integrin complex in lipid rafts potentiates statins anti-cancer activity in pancreatic cancer. Cell Death Discov 2025; 11:39. [PMID: 39900574 PMCID: PMC11790905 DOI: 10.1038/s41420-025-02321-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/18/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
Plasma membrane macromolecular complexes function as signaling hubs that regulate cell behavior, which is particularly relevant in cancer. Our study provides evidence that the complex formed by the hERG1 potassium channel and the β1 subunit of integrin receptors preferentially localizes in Lipid Rafts (LRs) in Pancreatic Ductal Adenocarcinoma (PDAC) cell lines and primary samples. The complex recruits the p85 subunit of phosphatidyl-inositol-3-kinase (PI3K), activating phosphoinositide metabolism and triggering an intracellular signaling pathway centered on Akt. This pathway ultimately affects cancer cell proliferation through cyclins and p21, and cell migration through the small GTPase Rac-1 and f-actin organization. The hERG1/β1 integrin complex in LRs can be dissociated and the downstream signaling pathway can be inhibited by either disrupting LRs through methyl-beta-cyclodextrin (MβCD) or inhibiting cholesterol synthesis by statins. Treatment with a single chain bispecific antibody-scDb-hERG1-β1-specifically targeting the complex significantly potentiates the effects of both MβCD and statins on intracellular signaling. Consequently, these treatments decrease PDAC cell proliferation and motility in vitro. From a pharmacological perspective, different statins produce anti-neoplastic effects in synergy with scDb-hERG1-β1. Such combination also enhances tumor sensitivity to chemotherapeutic drugs, such as gemcitabine and oxaliplatin. The efficacy of these combination treatments depends on the amount of the hERG1/β1 integrin complex present on the plasma membrane of cancer cells. Finally, the combined treatment with statins and scDb-hERG1-β1 significantly reduces tumor growth and improves survival in vivo, in a preclinical mouse model. These results suggest that the combination of scDb-hERG1-β1 and statins represent a potential novel strategy for treating PDAC patients.
Collapse
Affiliation(s)
- Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | | | - Giacomo Bagni
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulia Boso
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Franco Nicolas D'Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, Rome, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
2
|
Lastraioli E, Iorio J, Piazza F, Capitani C, Santillo M, Duranti C, Bianchi S, Meattini I, Fraser SP, Djamgoz MBA, Becchetti A, Arcangeli A. Clinical relevance of macromolecular complexes involving integrins, potassium and sodium ion channels and the sodium/proton antiporter in human breast cancer. Cancer Cell Int 2025; 25:24. [PMID: 39865220 PMCID: PMC11765915 DOI: 10.1186/s12935-025-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K+ channel, the neonatal form of the Na+ channel NaV 1.5 (nNaV1.5) and the Na+/H+ antiporter NHE1 (NHE1/hERG1/β1/nNaV1.5 complex) has been recently described to be expressed and regulate relevant cancer related behaviors in Breast Cancer (BCa) cells. METHODS We analyzed the expression and impact on outcome of the genes encoding the four proteins forming the NHE1/hERG1/β1/nNaV1.5 complex (SLC9A1, KCNH2, ITGB1 and SCN5A) in public datasets. The corresponding proteins were also evaluated by immunohistochemistry and their expression was correlated with clinic-pathological and molecular characteristics and patients' survival. RESULTS The expression of KCNH2 and SCN5A was significantly correlated in primary BCa as occurs in the heart, although with a broader distribution, forming a functional network which also included ITGB1 and SLC9A1. The co-expression proteins emerged from the immunohistochemistry analysis. Interestingly, hERG1, nNav1.5 and the hERG1/β1 integrin complex associated with several clinical features, including molecular subtype and hormone receptor status. Moreover, hERG1 and the combination of hERG1 and nNav1.5 had impact on prognosis, contributing to identifying a group of patients with worse prognosis. CONCLUSIONS hERG1 and nNav1.5 channels along with β1 integrins and the NHE1 antiporter are co-expressed in BCa both at gene and protein levels, assembling into a macromolecular complex. The NHE1/hERG1/β1/nNaV1.5 complex can be considered a novel biomarker and potential target for therapy for BCa patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy.
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Piazza
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- Department of Physics, University of Florence and Florence Section of INFN, Florence, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Santillo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| | - Simonetta Bianchi
- Department of Health Sciences, Division of Pathological Anatomy, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Mersin 10, Haspolat, TRNC, Turkey
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| |
Collapse
|
3
|
Arcangeli A, Iorio J, Duranti C. Targeting the hERG1 and β1 integrin complex for cancer treatment. Expert Opin Ther Targets 2024; 28:145-157. [PMID: 38372580 DOI: 10.1080/14728222.2024.2318449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Despite great advances, novel therapeutic targets and strategies are still needed, in particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant considering the hERG1 potassium channel as a novel target for antineoplastic therapy. AREAS COVERED A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments. EXPERT OPINION Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.
Collapse
Affiliation(s)
- Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Sesto Fiorentino (FI), Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy
- MCK Therapeutics srl, Pistoia (PT), Italy
| |
Collapse
|