1
|
Maharana B, Mahalle S, Bhende R, Dafale NA. Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05033-y. [PMID: 39096471 DOI: 10.1007/s12010-024-05033-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility.
Collapse
Affiliation(s)
- Bhumika Maharana
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Sejal Mahalle
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Rahul Bhende
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
2
|
Freire TFA, Hu Z, Wood KB, Gjini E. Modeling spatial evolution of multi-drug resistance under drug environmental gradients. PLoS Comput Biol 2024; 20:e1012098. [PMID: 38820350 PMCID: PMC11142541 DOI: 10.1371/journal.pcbi.1012098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/23/2024] [Indexed: 06/02/2024] Open
Abstract
Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria based on a drug-concentration rescaling approach. We show how the resistance to drugs in space, and the consequent adaptation of growth rate, is governed by a Price equation with diffusion, integrating features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Although in many evolution models, per capita growth rate is a natural surrogate for fitness, in spatially-extended, potentially heterogeneous habitats, fitness is an emergent property that potentially reflects additional complexities, from boundary conditions to the specific spatial variation of growth rates. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical metric for characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem, λ1. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits to the relative advantage of each mutant across the environment. Our approach allows one to predict the precise outcomes of selection among mutants over space, ultimately from comparing their λ1 values, which encode a critical interplay between growth functions, movement traits, habitat size and boundary conditions. Such mathematical understanding opens new avenues for multi-drug therapeutic optimization.
Collapse
Affiliation(s)
- Tomas Ferreira Amaro Freire
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Zhijian Hu
- Departments of Biophysics and Physics, University of Michigan, United States of America
| | - Kevin B. Wood
- Departments of Biophysics and Physics, University of Michigan, United States of America
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
3
|
Singh S, Varshney N, Singothu S, Bhandari V, Jha HC. Influence of chlorpyrifos and endosulfan and their metabolites on the virulence of Helicobacter pylori. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123676. [PMID: 38442821 DOI: 10.1016/j.envpol.2024.123676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/10/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the β-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.
Collapse
Affiliation(s)
- Siddharth Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nidhi Varshney
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Siva Singothu
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad, India.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India.
| |
Collapse
|
4
|
Suresh K, Pillai D. Prevalence of antimicrobial resistance, biofilm formation, efflux pump activity, and virulence capabilities in multi-drug-resistant Klebsiella pneumoniae isolated from freshwater fish farms. JOURNAL OF WATER AND HEALTH 2024; 22:721-734. [PMID: 38678425 DOI: 10.2166/wh.2024.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/30/2024]
Abstract
The present study aimed to determine the antibiotic resistance, underlying mechanisms, antibiotic residues, and virulence genes involved in 32 multi-drug-resistant Klebsiella pneumoniae isolates from freshwater fishes in Andhra Pradesh, India. Antibiogram studies revealed that all isolates were multi-drug-resistant, harbored tetA (96.8%), tetC (59.3%), tetD (71.9%), nfsA (59.3%), nfsB (53.1%), sul2 (68.7%), qnrC (43.7%), qnrD (50%), blaSHV (75%), blaTEM (68.7%), and blaCTX-M (93.7%) genes. Multiple antibiotic resistance index was calculated as 0.54. Sixteen isolates were confirmed to be hyper-virulent and harbored magA and rmpA genes. In total, 46.9, 31.2, and 21.9% of the isolates were categorized as strong, moderate, or weak biofilm formers, respectively. All isolates possessed an active efflux pump and harbored acrA, acrB, acrAB, and tolC genes in 94% of the isolates, followed by mdtK (56.2%). Porins such as ompK35 and ompK36 were detected in 59.3 and 62.5% of the isolates, respectively. Virulence genes fimH-1, mrkD, and entB were present in 84.3, 81.2, 87.5% of the isolates, respectively. These findings imply a potential threat that multi-drug-resistant bacterial pathogens could transmit to surrounding environments and humans through contaminated water and the aquaculture food chain.
Collapse
Affiliation(s)
- Kummari Suresh
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail: ;
| |
Collapse
|
5
|
Bagra K, Bellanger X, Merlin C, Singh G, Berendonk TU, Klümper U. Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166661. [PMID: 37652387 DOI: 10.1016/j.scitotenv.2023.166661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Environmental microbiomes are constantly exposed to invasion events through foreign, antibiotic resistant bacteria that were enriched in the anthropic sphere. However, the biotic and abiotic factors, as well as the natural barriers that determine the invasion success of these invader bacteria into the environmental microbiomes are poorly understood. A great example of such invasion events are river microbial communities constantly exposed to resistant bacteria originating from wastewater effluents. Here, we aim at gaining comprehensive insights into the key factors that determine their invasion success with a particular focus on the effects of environmental stressors, regularly co-released in wastewater effluents. Understanding invasion dynamics of resistant bacteria is crucial for limiting the environmental spread of antibiotic resistance. To achieve this, we grew natural microbial biofilms on glass slides in rivers for one month. The biofilms were then transferred to laboratory, recirculating flume systems and exposed to a single pulse of a model resistant invader bacterium (Escherichia coli) either in presence or absence of stress induced by Cu2+. The invasion dynamics of E. coli into the biofilms were then monitored for 14 days. Despite an initially successful introduction of E. coli into the biofilms, independent of the imposed stress, over time the invader perished in absence of stress. However, under stress the invading strain successfully established and proliferated in the biofilms. Noteworthy, the increased establishment success of the invader coincided with a loss in microbial community diversity under stress conditions, likely due to additional niche space becoming available for the invader.
Collapse
Affiliation(s)
- Kenyum Bagra
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany; Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Xavier Bellanger
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Christophe Merlin
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany.
| |
Collapse
|
6
|
Suresh K, Pillai D, Soman M, Sreenivas A, Paul R. Isolation and identification of antimicrobial susceptibility, biofilm formation, efflux pump activity, and virulence determinants in multi-drug resistant Pseudomonas aeruginosa isolated from freshwater fishes. JOURNAL OF WATER AND HEALTH 2023; 21:1858-1870. [PMID: 38153717 PMCID: wh_2023_206 DOI: 10.2166/wh.2023.206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The present study was undertaken to evaluate the prevalence, underlying resistance mechanism, and virulence involved in Pseudomonas aeruginosa (n = 35) isolated from freshwater fishes in Andhra Pradesh, India. Antibiogram studies revealed that 68.5, 62.8, 37.1, 11.4, 8.5, 57.1, 54.2, and 48.5% of isolates had resistance to oxytetracycline, co-trimoxazole, doxycycline, enrofloxacin, ciprofloxacin, cefotaxime, ceftazidime, and ampicillin, respectively. The resistant isolates harboured the tetA (85.7%), tetD (71.4%), tetM (91.4%), sul1 (80%), blaCTX-M (57.1%), blaTEM (42.8%), and blaSHV (48.5%) genes. In total, 50% of the isolates were altered as multi-drug resistant, and the multiple antibiotic resistance index was calculated as 0.4. Furthermore, 37.3, 48.5, and 14.2% of isolates were categorized as strong, moderate, and weak biofilm formers, possessing pslA (91.5%) and pslD (88.6%) biofilm encoding genes. In total, 82.8% of the isolates exhibited efflux pump activity and harboured the mexA (74.2%), mexB (77.1%), and oprM (37.1%) genes. Virulent genes oprL, toxA, exoS, and phzM were detected in 68.5, 68.5, 100, and 17.1% of isolates, respectively. The data suggested that P. aeruginosa harbours multiple resistance mechanisms and virulence factors that may contribute to antibiotic resistance and pathogenicity, and their distribution in fish culture facilities highlights the public health hazards of the food chain.
Collapse
Affiliation(s)
- Kummari Suresh
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India E-mail:
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Faculty of Fisheries Science, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Manju Soman
- Department of Animal Husbandry, Government of Kerala, Kochi, Kerala, India
| | - Akula Sreenivas
- Agriculture Market Intelligence Centre, Professor Jayashankar Telangana State Agricultural University, Hyderabad, India
| | - Robin Paul
- Department of Animal Husbandry, Government of Kerala, Kochi, Kerala, India
| |
Collapse
|
7
|
Freire T, Hu Z, Wood KB, Gjini E. Modeling spatial evolution of multi-drug resistance under drug environmental gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567447. [PMID: 38014279 PMCID: PMC10680811 DOI: 10.1101/2023.11.16.567447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria, based on a rescaling approach (Gjini and Wood, 2021). We show how the resistance to drugs in space, and the consequent adaptation of growth rate is governed by a Price equation with diffusion. The covariance terms in this equation integrate features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits, to the relative advantage of each mutant across the environment. Such a mathematical understanding allows to predict the precise outcomes of selection over space, ultimately from the fundamental balance between growth and movement traits, and their diversity in a population.
Collapse
Affiliation(s)
- Tomas Freire
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Zhijian Hu
- Departments of Biophysics and Physics, University of Michigan, USA
| | - Kevin B. Wood
- Departments of Biophysics and Physics, University of Michigan, USA
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Wallace VJ, Sakowski EG, Preheim SP, Prasse C. Bacteria exposed to antiviral drugs develop antibiotic cross-resistance and unique resistance profiles. Commun Biol 2023; 6:837. [PMID: 37573457 PMCID: PMC10423222 DOI: 10.1038/s42003-023-05177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 07/25/2023] [Indexed: 08/14/2023] Open
Abstract
Antiviral drugs are used globally as treatment and prophylaxis for long-term and acute viral infections. Even though antivirals also have been shown to have off-target effects on bacterial growth, the potential contributions of antivirals to antimicrobial resistance remains unknown. Herein we explored the ability of different classes of antiviral drugs to induce antimicrobial resistance. Our results establish the previously unrecognized capacity of antivirals to broadly alter the phenotypic antimicrobial resistance profiles of both gram-negative and gram-positive bacteria Escherichia coli and Bacillus cereus. Bacteria exposed to antivirals including zidovudine, dolutegravir and raltegravir developed cross-resistance to commonly used antibiotics including trimethoprim, tetracycline, clarithromycin, erythromycin, and amoxicillin. Whole genome sequencing of antiviral-resistant E. coli isolates revealed numerous unique single base pair mutations, as well as multi-base pair insertions and deletions, in genes with known and suspected roles in antimicrobial resistance including those coding for multidrug efflux pumps, carbohydrate transport, and cellular metabolism. The observed phenotypic changes coupled with genotypic results indicate that bacteria exposed to antiviral drugs with antibacterial properties in vitro can develop multiple resistance mutations that confer cross-resistance to antibiotics. Our findings underscore the potential contribution of wide scale usage of antiviral drugs to the development and spread of antimicrobial resistance in humans and the environment.
Collapse
Affiliation(s)
- Veronica J Wallace
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Eric G Sakowski
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Science, Mount St. Mary's University, Emmitsburg, MD, USA
| | - Sarah P Preheim
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
10
|
Pant I, Shashidhar R. Inter-species competition of surface bacterial flora of pomegranate and their role in spoilage. World J Microbiol Biotechnol 2023; 39:260. [PMID: 37495862 DOI: 10.1007/s11274-023-03709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
The surface of fruits is heterogenous in term of its microenvironment hence dictate the kind of microflora that develops during storage. A better understanding of spoilage organisms would lead to better preservation methods. The pomegranate was chosen, since its sturdy and spoils slow at room temperature and is ideal for studying fruit spoilage in-situ. In the current study we isolated organisms from fruit surface and study the spoilage and competition amongst microbial species. Total 17 unique bacterial isolates from pomegranate were identified. The 16S rRNA gene identification placed them in 8 major genera (Acinetobacter, Micrococcus, Pantoea, Microbacterium, Strenotrophomonas, Bacillus, Staphylococcus and Exiguobacterium). Competition assay among isolate suggested that Exiguobacterium is dominant species followed by Micrococcus, Pantoea and Bacillus. The consortium of 3 different combinations (5 bacteria each) of isolated bacteria showed the spoilage phenotype on pomegranate. Except for 3 bacterial isolates, the rest of the isolates produced any one or multiple enzymes associated with the food spoilage (cellulase, amylase, lactase, pectinase and protease). The isolates were checked for the presence of genes associated with antibiotic resistance and 78.9% of the tested micro-organisms were blaTEM positive. Aminoglycoside resistance genes were present in 10% of the tested microbes. This study demonstrated interspecies competition amongst spoilage organisms. This understanding of surface flora of fruit would give better insights to preserve fruits.
Collapse
Affiliation(s)
- Indu Pant
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (DAE-Deemed University), Trombay, Mumbai, 400094, India.
| |
Collapse
|
11
|
Brueck CL, Nason SL, Multra MG, Prasse C. Assessing the fate of antibiotics and agrochemicals during anaerobic digestion of animal manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159156. [PMID: 36195139 DOI: 10.1016/j.scitotenv.2022.159156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics and pesticides are used extensively by the livestock industry. Agricultural chemicals can pose potential human and environmental health risks due to their toxicity and through their contributions to antimicrobial resistance, and strategies to reduce their emission into the environment are urgently needed. Anaerobic digestion (AD) is a sustainable technology for manure management that produces biogas while also providing an opportunity to degrade agricultural chemicals that are present in manure. While the effects of selected chemicals on biogas production have been investigated previously, little is known about chemical transformations during AD. Using lab-scale AD batch reactors containing dairy manure, degradation kinetics and transformation products (TPs) were investigated for twenty compounds that are likely to be present in manure management systems and that we hypothesized would transform during AD. Digestate samples were extracted using a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and analyzed using liquid chromatography - high-resolution mass spectrometry. Eleven of the tested chemicals degraded, leading to the formation of 47 TPs. Three compounds degraded abiotically only, two degraded biotically only, and six degraded both abiotically and biotically. These results suggest that in addition to renewable energy generation, AD contributes to the degradation of chemical contaminants present in agricultural waste streams. However, the potential toxic effects of TPs require further investigation.
Collapse
Affiliation(s)
- Christopher L Brueck
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States of America
| | - Sara L Nason
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States of America
| | - Melody G Multra
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States of America
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, United States of America.
| |
Collapse
|
12
|
Lambraki IA, Chadag MV, Cousins M, Graells T, Léger A, Henriksson PJG, Troell MF, Harbarth S, Wernli D, Jørgensen PS, Carson CA, Parmley EJ, Majowicz SE. Factors impacting antimicrobial resistance in the South East Asian food system and potential places to intervene: A participatory, one health study. Front Microbiol 2023; 13:992507. [PMID: 36687632 PMCID: PMC9849958 DOI: 10.3389/fmicb.2022.992507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Background With AMU projected to increase, South East Asia (SEA) is at high risk of experiencing disproportionate health, social, and economic burdens due to antimicrobial resistance (AMR). Our objective was to identify factors influencing AMR in SEA's food system and places for intervention by integrating the perspectives of experts from the region to inform policy and management decisions. Materials and methods We conducted two 6.5 h workshops and two 90-min interviews involving 18 AMR and other disciplinary experts from human, animal, and environment sectors who brainstormed the factors influencing AMR and identified leverage points (places) for intervention. Transcripts and workshop materials were coded for factors and their connections and transcribed into a causal loop diagram (CLD). Thematic analysis described AMR dynamics in SEA's food system and leverage points for intervention. The CLD and themes were confirmed via participant feedback. Results Participants constructed a CLD of AMR in the SEA food system that contained 98 factors interlinked by 362 connections. CLD factors reflected eight sub-areas of the SEA food system (e.g., government). Seven themes [e.g., antimicrobial and pesticide use and AMR spread (n = 40 quotes)], six "overarching factors" that impact the entire AMR system [e.g., the drive to survive (n = 12 quotes)], and 10 places for intervention that target CLD factors (n = 5) and overarching factors (n = 2) emerged from workshop discussions. Conclusion The participant derived CLD of factors influencing AMR in the SEA food system demonstrates that AMR is a product of numerous interlinked actions taken across the One Health spectrum and that finding solutions is no simple task. Developing the model enabled the identification of potentially promising leverage points across human, animal, and environment sectors that, if comprehensively targeted using multi-pronged interventions, could evoke system wide changes that mitigate AMR. Even targeting some leverage points for intervention, such as increasing investments in research and capacity building, and setting and enforcing regulations to control antimicrobial supply, demand, and use could, in turn, shift mindsets that lead to changes in more difficult to alter leverage points, such as redefining the profit-driven intent that drives system behavior in ways that transform AMU and sustainably mitigate AMR.
Collapse
Affiliation(s)
- Irene Anna Lambraki
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada,*Correspondence: Irene Anna Lambraki, ✉
| | | | - Melanie Cousins
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Tiscar Graells
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden
| | - Anaïs Léger
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Patrik John Gustav Henriksson
- WorldFish, Penang, Malaysia,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden,Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Max Fredrik Troell
- Stockholm Resilience Center, Stockholm University, Stockholm, Sweden,Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Stephan Harbarth
- Infection Control Program and WHO Collaborating Center on Patient Safety, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Didier Wernli
- Global Studies Institute, University of Geneva, Geneva, Switzerland
| | - Peter Søgaard Jørgensen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, Stockholm, Sweden,Stockholm Resilience Center, Stockholm University, Stockholm, Sweden
| | - Carolee Anne Carson
- Foodborne Disease and Antimicrobial Resistance Surveillance Division, Public Health Agency of Canada, Guelph, ON, Canada
| | - Elizabeth Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shannon E. Majowicz
- School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
13
|
Pillay S, Calderón-Franco D, Urhan A, Abeel T. Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings. Front Microbiol 2022; 13:1066995. [PMID: 36532424 PMCID: PMC9755710 DOI: 10.3389/fmicb.2022.1066995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 08/12/2023] Open
Abstract
The success of antibiotics as a therapeutic agent has led to their ineffectiveness. The continuous use and misuse in clinical and non-clinical areas have led to the emergence and spread of antibiotic-resistant bacteria and its genetic determinants. This is a multi-dimensional problem that has now become a global health crisis. Antibiotic resistance research has primarily focused on the clinical healthcare sectors while overlooking the non-clinical sectors. The increasing antibiotic usage in the environment - including animals, plants, soil, and water - are drivers of antibiotic resistance and function as a transmission route for antibiotic resistant pathogens and is a source for resistance genes. These natural compartments are interconnected with each other and humans, allowing the spread of antibiotic resistance via horizontal gene transfer between commensal and pathogenic bacteria. Identifying and understanding genetic exchange within and between natural compartments can provide insight into the transmission, dissemination, and emergence mechanisms. The development of high-throughput DNA sequencing technologies has made antibiotic resistance research more accessible and feasible. In particular, the combination of metagenomics and powerful bioinformatic tools and platforms have facilitated the identification of microbial communities and has allowed access to genomic data by bypassing the need for isolating and culturing microorganisms. This review aimed to reflect on the different sequencing techniques, metagenomic approaches, and bioinformatics tools and pipelines with their respective advantages and limitations for antibiotic resistance research. These approaches can provide insight into resistance mechanisms, the microbial population, emerging pathogens, resistance genes, and their dissemination. This information can influence policies, develop preventative measures and alleviate the burden caused by antibiotic resistance.
Collapse
Affiliation(s)
- Stephanie Pillay
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | | | - Aysun Urhan
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
14
|
Drovetski SV, Schmidt BK, Lai JE, Gross MS, Hladik ML, Matterson KO, Karouna-Renier NK. Exposure to crop production alters cecal prokaryotic microbiota, inflates virulome and resistome in wild prairie grouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119418. [PMID: 35526643 DOI: 10.1016/j.envpol.2022.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Chemically intensive crop production depletes wildlife food resources, hinders animal development, health, survival, and reproduction, and it suppresses wildlife immune systems, facilitating emergence of infectious diseases with excessive mortality rates. Gut microbiota is crucial for wildlife's response to environmental stressors. Its composition and functionality are sensitive to diet changes and environmental pollution associated with modern crop production. In this study we use shotgun metagenomics (median 8,326,092 sequences/sample) to demonstrate that exposure to modern crop production detrimentally affects cecal microbiota of sharp-tailed grouse (Tympanuchus phasianellus: 9 exposed, 18 unexposed and greater prairie chickens (T. cupido; 11, 11). Exposure to crop production had greater effect on microbiota richness (t = 6.675, P < 0.001) and composition (PERMANOVA r2 = 0.212, P = 0.001) than did the host species (t = 4.762, P < 0.001; r2 = 0.070, P = 0.001) or their interaction (t = 3.449; r2 = 0.072, both P = 0.001), whereas sex and age had no effect. Although microbiota richness was greater in exposed (T. cupido chao1 = 152.8 ± 20.5; T. phasianellus 115.3 ± 17.1) than in unexposed (102.9 ± 15.1 and 101.1 ± 17.2, respectively) birds, some beneficial bacteria dropped out of exposed birds' microbiota or declined and were replaced by potential pathogens. Exposed birds also had higher richness and load of virulome (mean ± standard deviation; T. cupido 24.8 ± 10.0 and 10.1 ± 5.5, respectively; T. phasianellus 13.4 ± 6.8/4.9 ± 2.8) and resistome (T. cupido 46.8 ± 11.7/28.9 ± 10.2, T. phasianellus 38.3 ± 16.7/18.9 ± 14.2) than unexposed birds (T. cupido virulome: 14.2 ± 13.5, 4.5 ± 4.2; T. cupido resistome: 31.6 ± 20.2 and 13.1 ± 12.0; T. phasianellus virulome: 5.2 ± 4.7 and 1.4 ± 1.5; T. phasianellus resistome: 13.7 ± 16.1 and 4.0 ± 6.4).
Collapse
Affiliation(s)
- Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Brian K Schmidt
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jonas E Lai
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Michael S Gross
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Michelle L Hladik
- U.S. Geological Survey, California Water Science Center, Sacramento, CA, 95819, USA.
| | - Kenan O Matterson
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| | - Natalie K Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD, 20705, USA.
| |
Collapse
|
15
|
Saha P, Bose D, Stebliankin V, Cickovski T, Seth RK, Porter DE, Brooks BW, Mathee K, Narasimhan G, Colwell R, Scott GI, Chatterjee S. Prior exposure to microcystin alters host gut resistome and is associated with dysregulated immune homeostasis in translatable mouse models. Sci Rep 2022; 12:11516. [PMID: 35799048 PMCID: PMC9262933 DOI: 10.1038/s41598-022-15708-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022] Open
Abstract
A strong association between exposure to the common harmful algal bloom toxin microcystin and the altered host gut microbiome has been shown. We tested the hypothesis that prior exposure to the cyanotoxin microcystin-LR may alter the host resistome. We show that the mice exposed to microcystin-LR had an altered microbiome signature that harbored antibiotic resistance genes. Host resistome genotypes such as mefA, msrD, mel, ant6, and tet40 increased in diversity and relative abundance following microcystin-LR exposure. Interestingly, the increased abundance of these genes was traced to resistance to common antibiotics such as tetracycline, macrolides, glycopeptide, and aminoglycosides, crucial for modern-day treatment of several diseases. Increased abundance of these genes was positively associated with increased expression of PD1, a T-cell homeostasis marker, and pleiotropic inflammatory cytokine IL-6 with a concomitant negative association with immunosurveillance markers IL-7 and TLR2. Microcystin-LR exposure also caused decreased TLR2, TLR4, and REG3G expressions, increased immunosenescence, and higher systemic levels of IL-6 in both wild-type and humanized mice. In conclusion, the results show a first-ever characterization of the host resistome following microcystin-LR exposure and its connection to host immune status and antimicrobial resistance that can be crucial to understand treatment options with antibiotics in microcystin-exposed subjects in clinical settings.
Collapse
Affiliation(s)
- Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Vitalii Stebliankin
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Trevor Cickovski
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
| | - Ratanesh K Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
- Columbia VA Medical Center, Columbia, SC, 29209, USA
| | - Dwayne E Porter
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, 76798, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Giri Narasimhan
- Knight Foundation School of Computing & Information Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Rita Colwell
- CosmosID Inc, Germantown, MD, 20874, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Geoff I Scott
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- NIEHS Center for Oceans and Human Health and Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA.
- Columbia VA Medical Center, Columbia, SC, 29209, USA.
| |
Collapse
|
16
|
Bose D, Chatterjee S, Older E, Seth R, Janulewicz P, Saha P, Mondal A, Carlson JM, Decho AW, Sullivan K, Klimas N, Lasley S, Li J, Chatterjee S. Host gut resistome in Gulf War chronic multisymptom illness correlates with persistent inflammation. Commun Biol 2022; 5:552. [PMID: 35672382 PMCID: PMC9174162 DOI: 10.1038/s42003-022-03494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 05/17/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic multisymptom illness (CMI) affects a subsection of elderly and war Veterans and is associated with systemic inflammation. Here, using a mouse model of CMI and a group of Gulf War (GW) Veterans' with CMI we show the presence of an altered host resistome. Results show that antibiotic resistance genes (ARGs) are significantly altered in the CMI group in both mice and GW Veterans when compared to control. Fecal samples from GW Veterans with persistent CMI show a significant increase of resistance to a wide class of antibiotics and exhibited an array of mobile genetic elements (MGEs) distinct from normal healthy controls. The altered resistome and gene signature is correlated with mouse serum IL-6 levels. Altered resistome in mice also is correlated strongly with intestinal inflammation, decreased synaptic plasticity, reversible with fecal microbiota transplant (FMT). The results reported might help in understanding the risks to treating hospital acquired infections in this population.
Collapse
Affiliation(s)
- Dipro Bose
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Somdatta Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Ethan Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Ratanesh Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Patricia Janulewicz
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Punnag Saha
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Ayan Mondal
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jeffrey M Carlson
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Alan W Decho
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Kimberly Sullivan
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Nancy Klimas
- Department of Clinical Immunology, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Stephen Lasley
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL, USA
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
- Columbia VA Medical Center, Columbia, SC, USA.
| |
Collapse
|
17
|
Johnson RAB, Hann K, Leno A, Timire C, Bangura AJA, George MIZ, Davtyan H, Satyanarayana S, Nair D, Mansaray AHD, Bangura FI, Kanu JS, Edwards JK. Pesticide Importation in Sierra Leone, 2010–2021: Implications for Food Production and Antimicrobial Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084792. [PMID: 35457659 PMCID: PMC9026402 DOI: 10.3390/ijerph19084792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
There are no previous studies reporting the type and quantity of pesticides for farming from Sierra Leone and the impact of Ebola or COVID-19 on importation. This study reviewed imported farming pesticides by the Sierra Leone, Ministry of Agriculture and Forestry (MAF), between 2010–2021. It was a descriptive study using routinely collected importation data. We found the MAF imported pesticides for farming only during 2010, 2014 and 2021, in response to growing food insecurity and associated with Ebola and COVID-19 outbreaks. Results showed insecticide importation increased from 6230 L in 2010 to 51,150 L in 2021, and importation of antimicrobial pesticides (including fungicides) increased from 150 kg in 2010 to 23,560 kg in 2021. The hazard class risk classification of imported pesticides decreased over time. Increasing amounts of imported fungicides could increase the risk of future fungal resistance among humans. We found that in responding to escalating food insecurity, the government dramatically increased the amount of pesticide importation to improve crop production. Further support is necessary to decrease the risk of worsening food shortages and the possible threat of emerging antimicrobial resistance. We recommend continued monitoring and surveillance, with further studies on the most appropriate response to these multiple challenges.
Collapse
Affiliation(s)
- Raymonda A. B. Johnson
- Crop Protection Unit, Ministry of Agriculture and Forestry, Brookfields, Freetown 00232, Sierra Leone
- Crop Protection Department, School of Agriculture, Njala University, Bo 00232, Sierra Leone
- Correspondence: ; Tel.: +232-76271030 or +232-77894640
| | - Katrina Hann
- Sustainable Health Systems, Freetown 00232, Sierra Leone;
| | - Amara Leno
- Emergency Center for Transboundary Animal Diseases, Food and Agriculture Organisation of United Nation, Freetown 00232, Sierra Leone;
| | - Collins Timire
- International Union against TB and Lung Disease (The Union), 75006 Paris, France; (C.T.); (S.S.); (D.N.)
| | | | | | - Hayk Davtyan
- Tuberculosis Research and Prevention Center, Yerevan 0014, Armenia;
| | - Srinath Satyanarayana
- International Union against TB and Lung Disease (The Union), 75006 Paris, France; (C.T.); (S.S.); (D.N.)
| | - Divya Nair
- International Union against TB and Lung Disease (The Union), 75006 Paris, France; (C.T.); (S.S.); (D.N.)
| | - Alie H. D. Mansaray
- Crops Division, Ministry of Agriculture and Forestry, Ground Floor, West Wing, Youyi Building, Brookfields, Freetown 00232, Sierra Leone;
| | - Fatmata I. Bangura
- Epidemiology Unit—Livestock and Veterinary Services Division, Ministry of Agriculture and Forestry, Brookfields, Freetown 00232, Sierra Leone;
| | - Joseph S. Kanu
- Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 00232, Sierra Leone;
| | - Jeffrey K. Edwards
- Department of Global Health, University of Washington, Seattle, WA 98105, USA;
| |
Collapse
|
18
|
Kaviani Rad A, Balasundram SK, Azizi S, Afsharyzad Y, Zarei M, Etesami H, Shamshiri RR. An Overview of Antibiotic Resistance and Abiotic Stresses Affecting Antimicrobial Resistance in Agricultural Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4666. [PMID: 35457533 PMCID: PMC9025980 DOI: 10.3390/ijerph19084666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/29/2023]
Abstract
Excessive use of antibiotics in the healthcare sector and livestock farming has amplified antimicrobial resistance (AMR) as a major environmental threat in recent years. Abiotic stresses, including soil salinity and water pollutants, can affect AMR in soils, which in turn reduces the yield and quality of agricultural products. The objective of this study was to investigate the effects of antibiotic resistance and abiotic stresses on antimicrobial resistance in agricultural soils. A systematic review of the peer-reviewed published literature showed that soil contaminants derived from organic and chemical fertilizers, heavy metals, hydrocarbons, and untreated sewage sludge can significantly develop AMR through increasing the abundance of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARBs) in agricultural soils. Among effective technologies developed to minimize AMR's negative effects, salinity and heat were found to be more influential in lowering ARGs and subsequently AMR. Several strategies to mitigate AMR in agricultural soils and future directions for research on AMR have been discussed, including integrated control of antibiotic usage and primary sources of ARGs. Knowledge of the factors affecting AMR has the potential to develop effective policies and technologies to minimize its adverse impacts.
Collapse
Affiliation(s)
- Abdullah Kaviani Rad
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
| | - Siva K. Balasundram
- Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria 0003, South Africa;
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Cape Town 7129, South Africa
| | - Yeganeh Afsharyzad
- Department of Microbiology, Faculty of Modern Sciences, The Islamic Azad University of Tehran Medical Sciences, Tehran 19496-35881, Iran;
| | - Mehdi Zarei
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz 71946-85111, Iran;
- Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid 73819-43885, Iran
| | - Hassan Etesami
- Department of Soil Science, University of Tehran, Tehran 14179-35840, Iran;
| | - Redmond R. Shamshiri
- Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam-Bornim, Germany;
| |
Collapse
|
19
|
Pellegrini MC, Okada E, González Pasayo RA, Ponce AG. Prevalence of Escherichia coli strains in horticultural farms from Argentina: antibiotic resistance, biofilm formation, and phylogenetic affiliation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23225-23236. [PMID: 34802078 DOI: 10.1007/s11356-021-17523-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Escherichia coli is the bacteria most commonly used as an indicator of fecal contamination in agricultural environments. Moreover, E. coli is categorized as a priority pathogen due to its widespread antibiotic resistance. This study aimed to characterize E. coli strains isolated from 10 horticultural farms. Isolates were obtained from samples of vegetable crops (n = 62), the surrounding soil (n = 62), poultry litter (n = 8), and groundwater (n = 6). Phyllo-grouping assignment was performed on the total of E. coli isolates. Antibiograms and quantification of the minimal inhibitory concentration (MIC) were performed with antibiotics commonly used in humans. Biofilm formation capacity was studied by quantifying cells attached to culture tubes. Overall, 21 E. coli isolates were obtained. Three phylogenetic groups (A, B1, and C) and two Escherichia clade IV and IV-V were identified in the collection by polymerase chain reaction. Sixty-seven percent of the E. coli isolates were resistant to amoxicillin-clavulanic acid and/or ampicillin. Amoxicillin MIC values ranged from 11.9 to >190.5 µg/mL and ampicillin MIC values ranged from 3 to >190.5 µg/mL. All the E. coli isolates, resistant and non-resistant, had biofilm forming capacity. The presence of phenotypic resistance on fresh produce and environmental matrices could present significant opportunities for contamination that result in health risks for consumers. To the authors' best knowledge, this is the first environmental assessment of resistant E. coli occurrence in horticultural farms in South America.
Collapse
Affiliation(s)
- María Celeste Pellegrini
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina.
| | - Elena Okada
- Instituto Nacional de Tecnología Agropecuaria (INTA) Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, 7620, Balcarce, Argentina
| | - Ramón Alejandro González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible (IPADS, CONICET-INTA), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Graciela Ponce
- Grupo de Investigación en Ingeniería en Alimentos (GIIA), Instituto de Ciencia y Tecnología de alimentos y ambiente (INCITAA, CIC-UNMDP), Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Av. Juan B. Justo 4302, B7602AYL Mar del, Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, CABA, Argentina
| |
Collapse
|
20
|
Jolly AM, Thomas J. Chronic kidney disease of unknown etiology in India: a comparative study with Mesoamerican and Sri Lankan nephropathy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15303-15317. [PMID: 34984612 DOI: 10.1007/s11356-021-16548-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/11/2021] [Indexed: 06/14/2023]
Abstract
Chronic kidney disease of unknown etiology [CKDu] is a condition characterized by decline in kidney function and is not associated with diabetic nephropathy or hypertensive nephropathy. In this review, we have done a detailed literature analysis on CKDu in India, and then had a comparison with that of Mesoamerica and Sri Lanka. In India, CKDu became the second most common type of CKD after diabetic nephropathy. Silica was seen in the groundwater of both India and Sri Lanka, whereas in Mesoamerica silica exposure through particulate matter was seen among CKDu communities. DDE is a common agrochemical seen in both India and Sri Lanka. The risk factors vary from region to region and it is important to categorize CKDu population based on the risk factors to avoid misinterpretation of the condition as non-CKDu category and to evade further complications. More studies have to be conducted to reveal the detailed pathophysiological mechanisms and its relation with irrational exploitation of environmental resources.
Collapse
Affiliation(s)
- Aleeta Maria Jolly
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara, Kerala, India
| | - Jaya Thomas
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Ponekkara, Kerala, India.
| |
Collapse
|
21
|
Abstract
The emerging literature has suggested essential oils (EOs) as new possible weapons to fight antimicrobial resistance due to their inherent antimicrobial properties. However, the potential pharmaceutical use of EOs is confronted by several limitations, including being non-specific in terms of drug targeting, possessing a high cytotoxicity as well as posing a high risk for causing skin irritation. Furthermore, some EOs have been demonstrated to adversely affect the cellular lipid profiles and permeability of the cell membrane, which may result in undesirable outcomes for the cells. Nevertheless, owing to their naturally complex compositions, EOs still hold undiscovered potential to mitigate antimicrobial resistance, as an alternative to existing antibiotics. To address the issue of overuse in antibiotics for crops which have led to the growing threat of antimicrobial resistance globally, EOs have also been proposed as potential biopesticides. Since the perceived advantages of antimicrobial attributes in EOs remain largely unexplored, this review aims to provide a discourse into its current practical usefulness in the agricultural setting. Finally, updated bioengineering techniques with emphasis of the biopesticide potential of EOs as a means to alleviate antimicrobial resistance will be included.
Collapse
|
22
|
Humboldt-Dachroeden S, Mantovani A. Assessing Environmental Factors within the One Health Approach. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:240. [PMID: 33807528 PMCID: PMC7999754 DOI: 10.3390/medicina57030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023]
Abstract
Background: One Health is a comprehensive and multisectoral approach to assess and examine the health of animals, humans and the environment. However, while the One Health approach gains increasing momentum, its practical application meets hindrances. This paper investigates the environmental pillar of the One Health approach, using two case studies to highlight the integration of environmental considerations. The first case study pertains to the Danish monitoring and surveillance programme for antimicrobial resistance, DANMAP. The second case illustrates the occurrence of aflatoxin M1 (AFM1) in milk in dairy-producing ruminants in Italian regions. Method: A scientific literature search was conducted in PubMed and Web of Science to locate articles informing the two cases. Grey literature was gathered to describe the cases as well as their contexts. Results: 19 articles and 10 reports were reviewed and informed the two cases. The cases show how the environmental component influences the apparent impacts for human and animal health. The DANMAP highlights the two approaches One Health and farm to fork. The literature provides information on the comprehensiveness of the DANMAP, but highlights some shortcomings in terms of environmental considerations. The AFM1 case, the milk metabolite of the carcinogenic mycotoxin aflatoxin B1, shows that dairy products are heavily impacted by changes of the climate as well as by economic drivers. Conclusions: The two cases show that environmental conditions directly influence the onset and diffusion of hazardous factors. Climate change, treatment of soils, water and standards in slaughterhouses as well as farms can have a great impact on the health of animals, humans and the environment. Hence, it is important to include environmental considerations, for example, via engaging environmental experts and sharing data. Further case studies will help to better define the roles of environment in One Health scenarios.
Collapse
Affiliation(s)
- Sarah Humboldt-Dachroeden
- Department of Social Science and Business, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Alberto Mantovani
- Department on Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Roma, Italy;
| |
Collapse
|