1
|
Zhu L, Liu S, Liao F, Yang J, Liang T, Yang Y, Huang X, Gu L, Su L. Comprehensive Analysis of Blood-Based m6A Methylation in Human Ischemic Stroke. Mol Neurobiol 2023; 60:431-446. [PMID: 36279101 DOI: 10.1007/s12035-022-03064-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/03/2022] [Indexed: 01/21/2023]
Abstract
Alterations of N6-methyladenosine (m6A) methylation have been reported in the cerebral cortices of mouse and rat models of ischemic stroke (IS). However, the role of m6A methylation in human IS is still unknown. We assessed m6A levels in peripheral blood from patients with IS and healthy controls. A transient middle cerebral artery occlusion and reperfusion (tMCAO/R) mouse model, and an oxygen-glucose deprivation/reperfusion (OGD/R) model in A172 cells were established to further assess m6A levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing were performed in the peripheral blood of patients with IS and healthy controls. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were used to identify underlying biological processes. In this study, we found that global m6A levels were elevated in the peripheral blood of patients with IS, in the cerebral cortex of mice after tMCAO/R treatment and in A172 cells after OGD/R treatment. MeRIP-seq analysis identified 2115 altered m6A peaks in patients with IS, 1052 upregulated and 1063 downregulated. Downregulated methylated mRNAs were enriched in Hippo signaling pathway, cytokine-cytokine receptor interaction, NF-kappa B signaling pathway, etc. Upregulated methylated mRNAs were enriched in calcium signaling pathways, Hedgehog signaling pathway, MAPK signaling pathway, etc. Moreover, a total of 84 differentially expressed mRNAs with altered m6A peaks were identified and enriched in EGFR tyrosine kinase inhibitor, Hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This study is the first to profile the transcriptome-wide m6A methylome of peripheral blood in human IS and uncover increased global m6A levels in the peripheral blood of patients with IS.
Collapse
Affiliation(s)
- Lulu Zhu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China
| | - Shengying Liu
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China
| | - Fangping Liao
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China
| | - Jialei Yang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China
| | - Tian Liang
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China
| | - Yibing Yang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Xianli Huang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Aranda JF, Pérez-García A, Torrecilla-Parra M, Fernández-de Frutos M, Martín-Martín Y, Mateos-Gómez PA, Pardo-Marqués V, Busto R, Ramírez CM. Role of miR-199a-5p in the post-transcriptional regulation of ABCA1 in response to hypoxia in peritoneal macrophages. Front Cardiovasc Med 2022; 9:994080. [PMID: 36407436 PMCID: PMC9669644 DOI: 10.3389/fcvm.2022.994080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/03/2025] Open
Abstract
Hypoxia is a crucial factor contributing to maintenance of atherosclerotic lesions. The ability of ABCA1 to stimulate the efflux of cholesterol from cells in the periphery, particularly foam cells in atherosclerotic plaques, is an important anti-atherosclerotic mechanism. The posttranscriptional regulation by miRNAs represents a key regulatory mechanism of a number of signaling pathways involved in atherosclerosis. Previously, miR-199a-5p has been shown to be implicated in the endocytic and retrograde intracellular transport. Although the regulation of miR-199a-5p and ABCA1 by hypoxia has been already reported independently, the role of miR-199a-5p in macrophages and its possible role in atherogenic processes such us regulation of lipid homeostasis through ABCA1 has not been yet investigated. Here, we demonstrate that both ABCA1 and miR-199a-5p show an inverse regulation by hypoxia and Ac-LDL in primary macrophages. Moreover, we demonstrated that miR-199a-5p regulates ABCA1 mRNA and protein levels by directly binding to its 3'UTR. As a result, manipulation of cellular miR-199a-5p levels alters ABCA1 expression and cholesterol efflux in primary mouse macrophages. Taken together, these results indicate that the correlation between ABCA1-miR-199a-5p could be exploited to control macrophage cholesterol efflux during the onset of atherosclerosis, where cholesterol alterations and hypoxia play a pathogenic role.
Collapse
Affiliation(s)
- Juan Francisco Aranda
- Department of Basic Medical Sciences, CEU San Pablo University, CEU Universities, Madrid, Spain
| | - Ana Pérez-García
- IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | | | | | | | - Pedro A. Mateos-Gómez
- Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, Madrid, Spain
| | | | - Rebeca Busto
- Department of Clinical Biochemistry, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | | |
Collapse
|
3
|
He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN, Yang Y. Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Front Immunol 2021; 12:801985. [PMID: 34966392 PMCID: PMC8710457 DOI: 10.3389/fimmu.2021.801985] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke is caused by insufficient cerebrovascular blood and oxygen supply. It is a major contributor to death or disability worldwide and has become a heavy societal and clinical burden. To date, effective treatments for ischemic stroke are limited, and innovative therapeutic methods are urgently needed. Hypoxia inducible factor-1α (HIF-1α) is a sensitive regulator of oxygen homeostasis, and its expression is rapidly induced after hypoxia/ischemia. It plays an extensive role in the pathophysiology of stroke, including neuronal survival, neuroinflammation, angiogenesis, glucose metabolism, and blood brain barrier regulation. In addition, the spatiotemporal expression profile of HIF-1α in the brain shifts with the progression of ischemic stroke; this has led to contradictory findings regarding its function in previous studies. Therefore, unveiling the Janus face of HIF-1α and its target genes in different type of cells and exploring the role of HIF-1α in inflammatory responses after ischemia is of great importance for revealing the pathogenesis and identifying new therapeutic targets for ischemic stroke. Herein, we provide a succinct overview of the current approaches targeting HIF-1α and summarize novel findings concerning HIF-1α regulation in different types of cells within neurovascular units, including neurons, endothelial cells, astrocytes, and microglia, during the different stages of ischemic stroke. The current representative translational approaches focused on neuroprotection by targeting HIF-1α are also discussed.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yinzhong Ma
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jie Liu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dianhui Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiaxin Ren
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ruoyu Zhao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - JunLei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhen-Ni Guo
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Wu Y, Cai F, Lu Y, Hu Y, Wang Q. lncRNA RP11-531A24.3 inhibits the migration and proliferation of vascular smooth muscle cells by downregulating ANXA2 expression. Exp Ther Med 2021; 22:1439. [PMID: 34721681 DOI: 10.3892/etm.2021.10874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
A complete understanding of the behavioral influence and phenotypic transition of vascular smooth muscle cells, as well as the effects of the characteristics of these cells on the physiological and pathological processes of atherosclerosis, is crucial if new therapeutic targets for atherosclerosis are to be identified. In the present study, the long non-coding RNA RP11-531A24.3 was identified to be expressed at low levels in plaque tissues through screening a microarray for differentially expressed genes. The functional experimental results suggested that RP11-531A24.3 reduced the viability and inhibited the migration of human aortic vascular smooth muscle cells (HA-VSMCs). RNA antisense purification-mass spectrometry was used to identify the RNA-binding proteins (RBPs) for RP11-531A24.3. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the pathway with the highest degree of association with RP11-531A24.3 RBPs was related to cell migration. The reduced migration and viability mediated by RP11-531A24.3 overexpression was more significantly suppressed after annexin 2 (ANXA2) depletion in RP11-531A24.3-overexpressing HA-VSMCs. Culture of HA-VSMCs under hypoxic conditions (1% O2) reduced the expression of RP11-531A24.3, and enhanced the protein expression of ANXA2 and HIF-1α, while knockdown of ANXA2 downregulated the protein expression of HIF-1α. These results suggested that RP11-531A24.3 regulated the proliferation and migration of HA-VSMCs through ANXA2 expression, and hypoxia may be an external factor in the regulation of RP11-531A24.3 and its downstream targets.
Collapse
Affiliation(s)
- Yilin Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fen Cai
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Clinical Laboratory, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, Guangdong 510800, P.R. China
| | - Yuanbin Lu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yanwei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China.,Department of Clinical Laboratory, Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
5
|
Balogh E, Tóth A, Méhes G, Trencsényi G, Paragh G, Jeney V. Hypoxia Triggers Osteochondrogenic Differentiation of Vascular Smooth Muscle Cells in an HIF-1 (Hypoxia-Inducible Factor 1)-Dependent and Reactive Oxygen Species-Dependent Manner. Arterioscler Thromb Vasc Biol 2020; 39:1088-1099. [PMID: 31070451 DOI: 10.1161/atvbaha.119.312509] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective- Vascular calcification is associated with high risk of cardiovascular events and mortality. Osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) is the major cellular mechanism underlying vascular calcification. Because tissue hypoxia is a common denominator in vascular calcification, we investigated whether hypoxia per se triggers osteochondrogenic differentiation of VSMCs. Approach and Results- We studied osteochondrogenic differentiation of human aorta VSMCs cultured under normoxic (21% O2) and hypoxic (5% O2) conditions. Hypoxia increased protein expression of HIF (hypoxia-inducible factor)-1α and its target genes GLUT1 (glucose transporter 1) and VEGFA (vascular endothelial growth factor A) and induced mRNA and protein expressions of osteochondrogenic markers, that is, RUNX2 (runt-related transcription factor 2), SOX9 (Sry-related HMG box-9), OCN (osteocalcin) and ALP (alkaline phosphatase), and induced a time-dependent calcification of the extracellular matrix of VSMCs. HIF-1 inhibition by chetomin abrogated the effect of hypoxia on osteochondrogenic markers and abolished extracellular matrix calcification. Hypoxia triggered the production of reactive oxygen species, which was inhibited by chetomin. Scavenging reactive oxygen species by N-acetyl cysteine attenuated hypoxia-mediated upregulation of HIF-1α, RUNX2, and OCN protein expressions and inhibited extracellular matrix calcification, which effect was mimicked by a specific hydrogen peroxide scavenger sodium pyruvate and a mitochondrial reactive oxygen species inhibitor rotenone. Ex vivo culture of mice aorta under hypoxic conditions triggered calcification which was inhibited by chetomin and N-acetyl cysteine. In vivo hypoxia exposure (10% O2) increased RUNX2 mRNA levels in mice lung and the aorta. Conclusions- Hypoxia contributes to vascular calcification through the induction of osteochondrogenic differentiation of VSMCs in an HIF-1-dependent and mitochondria-derived reactive oxygen species-dependent manner.
Collapse
Affiliation(s)
- Enikő Balogh
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Andrea Tóth
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology (G.M.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Trencsényi
- Department of Nuclear Medicine (G.T.), Faculty of Medicine, University of Debrecen, Hungary
| | - György Paragh
- Department of Internal Medicine (G.P.), Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jeney
- From the Research Centre for Molecular Medicine (E.B., A.T., V.J.), Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
6
|
Sadaghianloo N, Contenti J, Dardik A, Mazure NM. Role of Hypoxia and Metabolism in the Development of Neointimal Hyperplasia in Arteriovenous Fistulas. Int J Mol Sci 2019; 20:ijms20215387. [PMID: 31671790 PMCID: PMC6862436 DOI: 10.3390/ijms20215387] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022] Open
Abstract
For patients with end-stage renal disease requiring hemodialysis, their vascular access is both their lifeline and their Achilles heel. Despite being recommended as primary vascular access, the arteriovenous fistula (AVF) shows sub-optimal results, with about 50% of patients needing a revision during the year following creation. After the AVF is created, the venous wall must adapt to new environment. While hemodynamic changes are responsible for the adaptation of the extracellular matrix and activation of the endothelium, surgical dissection and mobilization of the vein disrupt the vasa vasorum, causing wall ischemia and oxidative stress. As a consequence, migration and proliferation of vascular cells participate in venous wall thickening by a mechanism of neointimal hyperplasia (NH). When aggressive, NH causes stenosis and AVF dysfunction. In this review we show how hypoxia, metabolism, and flow parameters are intricate mechanisms responsible for the development of NH and stenosis during AVF maturation.
Collapse
Affiliation(s)
- Nirvana Sadaghianloo
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Julie Contenti
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Emergency Medicine, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| | - Alan Dardik
- Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, CT 06520, USA.
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, CT 06516, USA.
| | - Nathalie M Mazure
- Centre de Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, INSERM U1065, 151 Route de St Antoine de Ginestière, BP2 3194, 06204 Nice CEDEX 03, France.
- Department of Vascular Surgery, Centre Hospitalier Universitaire de Nice, 06000 Nice, France.
| |
Collapse
|
7
|
Kusters PJH, Lutgens E, Seijkens TTP. Exploring immune checkpoints as potential therapeutic targets in atherosclerosis. Cardiovasc Res 2019; 114:368-377. [PMID: 29309533 DOI: 10.1093/cvr/cvx248] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/21/2017] [Indexed: 12/20/2022] Open
Abstract
In the past decades, the inflammatory nature of atherosclerosis has been well-recognized and despite the development of therapeutic strategies targeted at its classical risk factors such as dyslipidemia and hypertension, atherosclerosis remains a major cause of morbidity and mortality. Additional strategies targeting the chronic inflammatory pathways underlying the development of atherosclerosis are therefore required. Interactions between different immune cells result in the secretion of inflammatory mediators, such as cytokines and chemokines, and fuel atherogenesis. Immune checkpoint proteins have a critical role in facilitating immune cell interactions and play an essential role in the development of atherosclerosis. Although the therapeutic potential of these molecules is well-recognized in clinical oncology, the use of immune checkpoint modulators in atherosclerosis is still limited to experimental models. Here, we review recent insights on the role of immune checkpoint proteins in atherosclerosis. Additionally, we explore the therapeutic potential and challenges of immune checkpoint modulating strategies in cardiovascular medicine and we discuss novel therapeutic approaches to target these proteins in atherosclerosis.
Collapse
Affiliation(s)
- Pascal J H Kusters
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Experimental Vascular Biology, Academic Medical Center (AMC), University of Amsterdam, Meibergdreef 15, 1105 CZ Amsterdam, The Netherlands.,Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian's University (LMU), Pettenkoferstraße 8a, 80336 Munich, Germany
| |
Collapse
|
8
|
Basic J, Stojkovic S, Assadian A, Rauscher S, Duschek N, Kaun C, Wojta J, Falkensammer J. The Relevance of Vascular Endothelial Growth Factor, Hypoxia Inducible Factor-1 Alpha, and Clusterin in Carotid Plaque Instability. J Stroke Cerebrovasc Dis 2019; 28:1540-1545. [DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 03/03/2019] [Indexed: 10/27/2022] Open
|
9
|
Billaud M, Hill JC, Richards TD, Gleason TG, Phillippi JA. Medial Hypoxia and Adventitial Vasa Vasorum Remodeling in Human Ascending Aortic Aneurysm. Front Cardiovasc Med 2018; 5:124. [PMID: 30276199 PMCID: PMC6151311 DOI: 10.3389/fcvm.2018.00124] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
Human ascending aortic aneurysms characteristically exhibit cystic medial degeneration of the aortic wall encompassing elastin degeneration, proteoglycan accumulation and smooth muscle cell loss. Most studies have focused on the aortic media and there is a limited understanding of the importance of the adventitial layer in the setting of human aneurysmal disease. We recently demonstrated that the adventitial ECM contains key angiogenic factors that are downregulated in aneurysmal aortic specimens. In this study, we investigated the adventitial microvascular network (vasa vasorum) of aneurysmal aortic specimens of different etiology and hypothesized that the vasa vasorum is disrupted in patients with ascending aortic aneurysm. Morphometric analyses of hematoxylin and eosin-stained human aortic cross-sections revealed evidence of vasa vasorum remodeling in aneurysmal specimens, including reduced density of vessels, increased lumen area and thickening of smooth muscle actin-positive layers. These alterations were inconsistently observed in specimens of bicuspid aortic valve (BAV)-associated aortopathy, while vasa vasorum remodeling was typically observed in aneurysms arising in patients with the morphologically normal tricuspid aortic valve (TAV). Gene expression of hypoxia-inducible factor 1α and its downstream targets, metallothionein 1A and the pro-angiogenic factor vascular endothelial growth factor, were down-regulated in the adventitia of aneurysmal specimens when compared with non-aneurysmal specimens, while the level of the anti-angiogenic factor thrombospondin-1 was elevated. Immunodetection of glucose transporter 1 (GLUT1), a marker of chronic tissue hypoxia, was minimal in non-aneurysmal medial specimens, and locally accumulated within regions of elastin degeneration, particularly in TAV-associated aneurysms. Quantification of GLUT1 revealed elevated levels in the aortic media of TAV-associated aneurysms when compared to non-aneurysmal counterparts. We detected evidence of chronic inflammation as infiltration of lymphoplasmacytic cells in aneurysmal specimens, with a higher prevalence of lymphoplasmacytic infiltrates in aneurysmal specimens from patients with TAV compared to that of patients with BAV. These data highlight differences in vasa vasorum remodeling and associated medial chronic hypoxia markers between aneurysms of different etiology. These aberrations could contribute to malnourishment of the aortic media and could conceivably participate in the pathogenesis of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Marie Billaud
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States.,Center for Vascular Remodeling and Regeneration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Jain T, Nikolopoulou EA, Xu Q, Qu A. Hypoxia inducible factor as a therapeutic target for atherosclerosis. Pharmacol Ther 2018; 183:22-33. [DOI: 10.1016/j.pharmthera.2017.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Abstract
Endoglin (ENG, also known as CD105) is a transforming growth factor β (TGFβ) associated receptor and is required for both vasculogenesis and angiogenesis. Angiogenesis is important in the development of cerebral vasculature and in the pathogenesis of cerebral vascular diseases. ENG is an essential component of the endothelial nitric oxide synthase activation complex. Animal studies showed that ENG deficiency impairs stroke recovery. ENG deficiency also impairs the regulation of vascular tone, which contributes to the pathogenesis of brain arteriovenous malformation (bAVM) and vasospasm. In human, functional haploinsufficiency of ENG gene causes type I hereditary hemorrhagic telangiectasia (HHT1), an autosomal dominant disorder. Compared to normal population, HHT1 patients have a higher prevalence of AVM in multiple organs including the brain. Vessels in bAVM are fragile and tend to rupture, causing hemorrhagic stroke. High prevalence of pulmonary AVM in HHT1 patients are associated with a higher incidence of paradoxical embolism in the cerebral circulation causing ischemic brain injury. Therefore, HHT1 patients are at risk for both hemorrhagic and ischemic stroke. This review summarizes the possible mechanism of ENG in the pathogenesis of cerebrovascular diseases in experimental animal models and in patients.
Collapse
Affiliation(s)
- Wan Zhu
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Li Ma
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Rui Zhang
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| | - Hua Su
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Hjelmgren O, Gellerman K, Kjelldahl J, Lindahl P, Bergström GML. Increased Vascularization in the Vulnerable Upstream Regions of Both Early and Advanced Human Carotid Atherosclerosis. PLoS One 2016; 11:e0166918. [PMID: 27973542 PMCID: PMC5156420 DOI: 10.1371/journal.pone.0166918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vascularization of atherosclerotic plaques has been linked to plaque vulnerability. The aim of this study was to test if the vascularization was increased in upstream regions of early atherosclerotic carotid plaques and also to test if the same pattern of vascularization was seen in complicated, symptomatic plaques. METHODS We enrolled 45 subjects with early atherosclerotic lesions for contrast enhanced ultrasound and evaluated the percentage of plaque area in a longitudinal ultrasound section which contained contrast agent. Contrast-agent uptake was evaluated in both the upstream and downstream regions of the plaque. We also collected carotid endarterectomy specimens from 56 subjects and upstream and downstream regions were localized using magnetic resonance angiography and analyzed using histopathology and immunohistochemistry. RESULTS Vascularization was increased in the upstream regions of early carotid plaques compared with downstream regions (30% vs. 23%, p = 0.033). Vascularization was also increased in the upstream regions of advanced atherosclerotic lesions compared with downstream regions (4.6 vs. 1.4 vessels/mm2, p = 0.001) and was associated with intra-plaque hemorrhage and inflammation. CONCLUSIONS Vascularization is increased in the upstream regions of both early and advanced plaques and is in advanced lesions mainly driven by inflammation.
Collapse
Affiliation(s)
- Ola Hjelmgren
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- * E-mail:
| | - Karl Gellerman
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Josefin Kjelldahl
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran M. L. Bergström
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Abstract
The anoxemia theory proposes that an imbalance between the demand for and supply of oxygen in the arterial wall is a key factor in the development of atherosclerosis. There is now substantial evidence that there are regions within the atherosclerotic plaque in which profound hypoxia exists; this may fundamentally change the function, metabolism, and responses of many of the cell types found within the developing plaque and whether the plaque will evolve into a stable or unstable phenotype. Hypoxia is characterized in molecular terms by the stabilization of hypoxia-inducible factor (HIF) 1α, a subunit of the heterodimeric nuclear transcriptional factor HIF-1 and a master regulator of oxygen homeostasis. The expression of HIF-1 is localized to perivascular tissues, inflammatory macrophages, and smooth muscle cells adjacent to the necrotic core of atherosclerotic lesions and regulates several genes that are important to vascular function including vascular endothelial growth factor, nitric oxide synthase, endothelin-1, and erythropoietin. This review summarizes the effects of hypoxia on the functions of cells involved in atherogenesis and the evidence for its potential importance from experimental models and clinical studies.
Collapse
Affiliation(s)
- Gordon A A Ferns
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- 1 Department of Medical Education, Brighton & Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
14
|
Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, Nielsen CH, Nielsen LB. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:1782-90. [PMID: 27444197 DOI: 10.1161/atvbaha.116.307830] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Atherosclerotic lesions contain hypoxic areas, but the pathophysiological importance of hypoxia is unknown. Hypoxia-inducible factor-1α (HIF-1α) is a key transcription factor in cellular responses to hypoxia. We investigated the hypothesis that HIF-1α has effects on macrophage biology that promotes atherogenesis in mice. APPROACH AND RESULTS Studies with molecular probes, immunostaining, and laser microdissection of aortas revealed abundant hypoxic, HIF-1α-expressing macrophages in murine atherosclerotic lesions. To investigate the significance of macrophage HIF-1α, Ldlr(-/-) mice were transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis.
Collapse
Affiliation(s)
- Annemarie Aarup
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Tanja X Pedersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Nanna Junker
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Christina Christoffersen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Emil D Bartels
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Marie Madsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Carsten H Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.)
| | - Lars B Nielsen
- From the Department of Biomedical Sciences (A.A., T.X.P., N.J., C.C., M.M., C.H.N., L.B.N.) and Department of Clinical Medicine (L.B.N.), University of Copenhagen, Denmark; and Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark (C.C., E.D.B., L.B.N.).
| |
Collapse
|
15
|
Jantsch J, Schödel J. Hypoxia and hypoxia-inducible factors in myeloid cell-driven host defense and tissue homeostasis. Immunobiology 2014; 220:305-14. [PMID: 25439732 DOI: 10.1016/j.imbio.2014.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 02/08/2023]
Abstract
The impact of tissue oxygenation and hypoxia on immune cells has been recognized as a major determinant of host defense and tissue homeostasis. In this review, we will summarize the available data on tissue oxygenation in inflamed and infected tissue and the effect of low tissue oxygenation on myeloid cell function. Furthermore, we will highlight effects of the master regulators of the cellular hypoxic response, hypoxia-inducible transcription factors (HIF), in myeloid cells in antimicrobial defense and tissue homeostasis.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Institut für Klinische Mikrobiologie und Hygiene, Universitätsklinikum Regensburg, Germany; Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| | - Johannes Schödel
- Medizinische Klinik 4, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Translational Research Center, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
16
|
Christoph M, Ibrahim K, Hesse K, Augstein A, Schmeisser A, Braun-Dullaeus RC, Simonis G, Wunderlich C, Quick S, Strasser RH, Poitz DM. Local inhibition of hypoxia-inducible factor reduces neointima formation after arterial injury in ApoE-/- mice. Atherosclerosis 2014; 233:641-647. [PMID: 24561491 DOI: 10.1016/j.atherosclerosis.2014.01.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hypoxia plays a pivotal role in development and progression of restenosis after vascular injury. Under hypoxic conditions the hypoxia-inducible factors (HIFs) are the most important transcription factors for the adaption to reduced oxygen supply. Therefore the aim of the study was to investigate the effect of a local HIF-inhibition and overexpression on atherosclerotic plaque development in a murine vascular injury model. METHODS AND RESULTS After wire-induced vascular injury in ApoE-/- mice a transient, local inhibition of HIF as well as an overexpression approach of the different HIF-subunits (HIF-1α, HIF-2α) by adenoviral infection was performed. The local inhibition of the HIF-pathway using a dominant-negative mutant dramatically reduced the extent of neointima formation. The diminished plaque size was associated with decreased expression of the well-known HIF-target genes vascular endothelial growth factor-A (VEGF-A) and its receptors Flt-1 and Flk-1. In contrast, the local overexpression of HIF-1α and HIF-2α further increased the plaque size after wire-induced vascular injury. CONCLUSIONS Local HIF-inhibition decreases and HIF-α overexpression increases the injury induced neointima formation. These findings provide new insight into the pathogenesis of atherosclerosis and may lead to new therapeutic options for the treatment of in stent restenosis.
Collapse
MESH Headings
- Adenoviridae
- Animals
- Apolipoproteins E/deficiency
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/biosynthesis
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/physiology
- Coronary Restenosis
- Disease Models, Animal
- Endothelium, Vascular/injuries
- Femoral Artery/injuries
- Femoral Artery/pathology
- Genetic Vectors
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/physiology
- Male
- Mice
- Mice, Knockout
- Neointima/prevention & control
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/prevention & control
- Signal Transduction
- Transduction, Genetic
- Up-Regulation
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor Receptor-1/biosynthesis
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
Collapse
Affiliation(s)
- Marian Christoph
- University of Dresden, Heart Center, University Hospital, Germany
| | - Karim Ibrahim
- University of Dresden, Heart Center, University Hospital, Germany
| | - Kathleen Hesse
- University of Dresden, Heart Center, University Hospital, Germany
| | - Antje Augstein
- University of Dresden, Heart Center, University Hospital, Germany
| | | | | | - Gregor Simonis
- University of Dresden, Heart Center, University Hospital, Germany
| | | | - Silvio Quick
- University of Dresden, Heart Center, University Hospital, Germany
| | - Ruth H Strasser
- University of Dresden, Heart Center, University Hospital, Germany
| | - David M Poitz
- University of Dresden, Heart Center, University Hospital, Germany.
| |
Collapse
|
17
|
Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1 alpha/VEGF pathway. PLoS One 2013; 8:e81773. [PMID: 24312355 PMCID: PMC3843701 DOI: 10.1371/journal.pone.0081773] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/16/2013] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is supposed to contribute to the pathogenesis of allergic airway disease. VEGF expression is regulated by a variety of stimuli such as nitric oxide, growth factors, and hypoxia-inducible factor-1 alpha (HIF-1α). Recently, inhibition of the mammalian target of rapamycin (mTOR) has been shown to alleviate cardinal asthmatic features, including airway hyperresponsiveness, eosinophilic inflammation, and increased vascular permeability in asthma models. Based on these observations, we have investigated whether mTOR is associated with HIF-1α-mediated VEGF expression in allergic asthma. In studies with the mTOR inhibitor rapamycin, we have elucidated the stimulatory role of a mTOR-HIF-1α-VEGF axis in allergic response. Next, the mechanisms by which mTOR is activated to modulate this response have been evaluated. mTOR is known to be regulated by phosphoinositide 3-kinase (PI3K)/Akt or protein kinase C-delta (PKC δ) in various cell types. Consistent with these, our results have revealed that suppression of PKC δ by rottlerin leads to the inhibition of PI3K/Akt activity and the subsequent blockade of a mTOR-HIF-1α-VEGF module, thereby attenuating typical asthmatic attack in a murine model. Thus, the present data indicate that PKC δ is necessary for the modulation of the PI3K/Akt/mTOR signaling cascade, resulting in a tight regulation of HIF-1α activity and VEGF expression. In conclusion, PKC δ may represent a valuable target for innovative therapeutic treatment of allergic airway disease.
Collapse
|
18
|
Orbay H, Hong H, Zhang Y, Cai W. Positron emission tomography imaging of atherosclerosis. Theranostics 2013; 3:894-902. [PMID: 24312158 PMCID: PMC3841339 DOI: 10.7150/thno.5506] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 01/27/2013] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis-related cardiovascular events are the leading causes of death in the industrialized world. Atherosclerosis develops insidiously and the initial manifestation is usually sudden cardiac death, stroke, or myocardial infarction. Molecular imaging is a valuable tool to identify the disease at an early stage before fatal manifestations occur. Among the various molecular imaging techniques, this review mainly focuses on positron emission tomography (PET) imaging of atherosclerosis. The targets and pathways that have been investigated to date for PET imaging of atherosclerosis include: glycolysis, cell membrane metabolism (phosphatidylcholine synthesis), integrin αvβ3, low density lipoprotein (LDL) receptors (LDLr), natriuretic peptide clearance receptors (NPCRs), fatty acid synthesis, vascular cell adhesion molecule-1 (VCAM-1), macrophages, platelets, etc. Many PET tracers have been investigated clinically for imaging of atherosclerosis. Early diagnosis of atherosclerotic lesions by PET imaging can help to prevent the premature death caused by atherosclerosis, and smooth translation of promising PET tracers into the clinic is critical to the benefit of patients.
Collapse
|
19
|
Lim CS, Kiriakidis S, Sandison A, Paleolog EM, Davies AH. Hypoxia-inducible factor pathway and diseases of the vascular wall. J Vasc Surg 2013; 58:219-30. [PMID: 23643279 DOI: 10.1016/j.jvs.2013.02.240] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/11/2013] [Accepted: 02/16/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Hypoxia may contribute to the pathogenesis of various diseases of the vascular wall. Hypoxia-inducible factors (HIFs) are nuclear transcriptional factors that regulate the transcription of genes that mediate cellular and tissue homeostatic responses to altered oxygenation. This article reviews the published literature on and discusses the role of the HIF pathway in diseases involving the vascular wall, including atherosclerosis, arterial aneurysms, pulmonary hypertension, vascular graft failure, chronic venous diseases, and vascular malformation. METHODS PubMed was searched with the terms "hypoxia-inducible factor" or "HIF" and "atherosclerosis," "carotid stenosis," "aneurysm," "pulmonary artery hypertension," "varicose veins," "venous thrombosis," "graft thrombosis," and "vascular malformation." RESULTS In atherosclerotic plaque, HIF-1α was localized in macrophages and smooth muscle cells bordering the necrotic core. Increased HIF-1α may contribute to atherosclerosis through alteration of smooth muscle cell proliferation and migration, angiogenesis, and lipid metabolism. The expression of HIF-1α is significantly elevated in aortic aneurysms compared with nonaneurysmal arteries. In pulmonary hypertension, HIF-1α contributes to the increase of intracellular K(+) and Ca(2+) leading to vasoconstriction of pulmonary smooth muscle cells. Alteration of the HIF pathway may contribute to vascular graft failure through the formation of intimal hyperplasia. In chronic venous disease, HIF pathway dysregulation contributes to formation of varicose veins and venous thromboembolism. However, whether the activation of the HIF pathway is protective or destructive to the venous wall is unclear. Increased activation of the HIF pathway causes aberrant expression of angiogenic factors contributing to the formation and maintenance of vascular malformations. CONCLUSIONS Pathologic vascular wall remodelling of many common diseases of the blood vessels has been found to be associated with altered activity of the HIF pathway. Therefore, understanding the role of the HIF pathway in diseases of the vascular wall is important to identify novel therapeutic strategies in the management of these pathologies.
Collapse
Affiliation(s)
- Chung S Lim
- Academic Section of Vascular Surgery, Department of Surgery and Cancer, Faculty of Medicine, Charing Cross Hospital Campus, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Xu L, Kanasaki K, Kitada M, Koya D. Diabetic angiopathy and angiogenic defects. FIBROGENESIS & TISSUE REPAIR 2012; 5:13. [PMID: 22853690 PMCID: PMC3465576 DOI: 10.1186/1755-1536-5-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022]
Abstract
Diabetes is one of the most serious health problems in the world. A major complication of diabetes is blood vessel disease, termed angiopathy, which is characterized by abnormal angiogenesis. In this review, we focus on angiogenesis abnormalities in diabetic complications and discuss its benefits and drawbacks as a therapeutic target for diabetic vascular complications. Additionally, we discuss glucose metabolism defects that are associated with abnormal angiogenesis in atypical diabetic complications such as cancer.
Collapse
Affiliation(s)
- Ling Xu
- Division of Diabetology & Endocrinology, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | | | | | | |
Collapse
|
21
|
Jager NA, Westra J, van Dam GM, Teteloshvili N, Tio RA, Breek JC, Slart RH, Boersma H, Low PS, Bijl M, Zeebregts CJ. Targeted Folate Receptor β Fluorescence Imaging as a Measure of Inflammation to Estimate Vulnerability Within Human Atherosclerotic Carotid Plaque. J Nucl Med 2012; 53:1222-9. [DOI: 10.2967/jnumed.111.099671] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Parathath S, Mick SL, Feig JE, Joaquin V, Grauer L, Habiel DM, Gassmann M, Gardner LB, Fisher EA. Hypoxia is present in murine atherosclerotic plaques and has multiple adverse effects on macrophage lipid metabolism. Circ Res 2011; 109:1141-52. [PMID: 21921268 DOI: 10.1161/circresaha.111.246363] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Human atherosclerotic plaques contain large numbers of cells deprived of O(2). In murine atherosclerosis, because the plaques are small, it is controversial whether hypoxia can occur. OBJECTIVE To examine if murine plaques contain hypoxic cells, and whether hypoxia regulates changes in cellular lipid metabolism and gene expression in macrophages. METHODS AND RESULTS Aortic plaques from apolipoprotein-E-deficient mice were immunopositive for hypoxia-inducible transcription factor (HIF-1α) and some of its downstream targets. Murine J774 macrophages rendered hypoxic demonstrated significant increases in cellular sterol and triglycerides. The increase in sterol content in hypoxic macrophages correlated with elevated 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase activity and mRNA levels. In addition, when macrophages were incubated with cholesterol complexes, hypoxic cells accumulated 120% more cholesterol, predominately in the free form. Cholesterol-efflux assays showed that hypoxia significantly decreased efflux mediated by ATP-binding cassette subfamily A member 1 (ABCA1), whose sub cellular localization was altered in both J774 and primary macrophages. Furthermore, in vivo expression patterns of selected genes from cells in hypoxic regions of murine plaques were similar to those from J774 and primary macrophages incubated in hypoxia. The hypoxia-induced accumulation of sterol and decreased cholesterol efflux was substantially reversed in vitro by reducing the expression of the hypoxia-inducible transcription factor, HIF-1α. CONCLUSION Hypoxic regions are present in murine plaques. Hypoxic macrophages have increased sterol content due to the induction of sterol synthesis and the suppression of cholesterol efflux, effects that are in part mediated by HIF-1α.
Collapse
Affiliation(s)
- Sajesh Parathath
- NYU School of Medicine, Departments of Medicine (Cardiology) and Cell Biology, Marc and Ruti Bell Program in Vascular Biology, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Augstein A, Poitz DM, Braun-Dullaeus RC, Strasser RH, Schmeisser A. Cell-specific and hypoxia-dependent regulation of human HIF-3α: inhibition of the expression of HIF target genes in vascular cells. Cell Mol Life Sci 2011; 68:2627-42. [PMID: 21069422 PMCID: PMC11115058 DOI: 10.1007/s00018-010-0575-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/29/2010] [Accepted: 10/22/2010] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factors (HIF) are transcription factors responding to reduced oxygen levels and are of utmost importance for regulation of a widespread of cellular processes, e.g., angiogenesis. In contrast to HIF-1α/HIF-2α, the relevance of HIF-3α for the regulation of the HIF pathway in human vascular cells is largely unknown. HIF-3α mRNA increases under hypoxia in endothelial and vascular smooth muscle cells. Analysis of HIF-3α isoforms revealed a cell type-specific pattern, but only one isoform, HIF-3α2, is hypoxia-inducible. Reporter gene assays of the appropriate promoter localized a 31-bp fragment, mediating this hypoxic regulation. The contribution of HIF-1/2 and NFκB to the HIF-3α induction was verified. Functional studies focused on overexpression of HIF-3α isoforms, which decrease the hypoxia-mediated expression of VEGFA and Enolase2. These data support the notion of a hypoxia-induced inhibitory function of HIF-3α and demonstrate for the first time the existence of this negative regulation of HIF-signaling in vascular cells.
Collapse
Affiliation(s)
- Antje Augstein
- Department of Internal Medicine and Cardiology, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| | | | | | | | | |
Collapse
|
24
|
Hurtado B, Muñoz X, Recarte-Pelz P, García N, Luque A, Krupinski J, Sala N, García de Frutos P. Expression of the vitamin K-dependent proteins GAS6 and protein S and the TAM receptor tyrosine kinases in human atherosclerotic carotid plaques. Thromb Haemost 2011; 105:873-82. [PMID: 21384080 DOI: 10.1160/th10-10-0630] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 01/25/2011] [Indexed: 11/05/2022]
Abstract
The GAS6/ProS-TAM system is composed of two vitamin K-dependent ligands (GAS6 and protein S) and their three protein tyrosine kinase receptors TYRO3, AXL and MERTK, known as the TAM receptors. The system plays a prominent role in conditions of injury, inflammation and repair. In murine models of atherosclerotic plaque formation, mutations in its components affect atherosclerosis severity. Here we used Taqman low-density arrays and immunoblotting to study mRNA and protein expression of GAS6, ProS and the TAM receptors in human carotid arteries with different degrees of atherosclerosis. The results show a clear down-regulation of the expression of AXL in atheroma plaques with respect to normal carotids that is matched by decreased abundance of AXL in protein extracts detected by immunoblotting. A similar decrease was observed in PROS1 mRNA expression in atherosclerotic carotids compared to the normal ones, but in this case protein S (ProS) was clearly increased in protein extracts of carotid arteries with increasing grade of atherosclerosis, suggesting that ProS is carried into the plaque. MERTK was also increased in atherosclerotic carotid arteries with respect to the normal ones, suggesting that the ProS-MERTK axis is functional in advanced human atherosclerotic plaques. MERTK was expressed in macrophages, frequently in association with ProS, while ProS was abundant also in the necrotic core. Our data suggest that the ProS-MERTK ligand-receptor pair was active in advanced stages of atherosclerosis, while AXL signalling is probably down-regulated.
Collapse
Affiliation(s)
- B Hurtado
- Translational Research Laboratory, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Olson N, van der Vliet A. Interactions between nitric oxide and hypoxia-inducible factor signaling pathways in inflammatory disease. Nitric Oxide 2011; 25:125-37. [PMID: 21199675 DOI: 10.1016/j.niox.2010.12.010] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/22/2010] [Accepted: 12/29/2010] [Indexed: 02/06/2023]
Abstract
Induction and activation of nitric oxide (NO) synthases (NOS) and excessive production of NO are common features of almost all diseases associated with infection and acute or chronic inflammation, although the contribution of NO to the pathophysiology of these diseases is highly multifactorial and often still a matter of controversy. Because of its direct impact on tissue oxygenation and cellular oxygen (O(2)) consumption and re-distribution, the ability of NO to regulate various aspects of hypoxia-induced signaling has received widespread attention. Conditions of tissue hypoxia and the activation of hypoxia-inducible factors (HIF) have been implicated in hypoxia or in cancer biology, but are also being increasingly recognized as important features of acute and chronic inflammation. Thus, the activation of HIF transcription factors has been increasingly implicated in inflammatory diseases, and recent studies have indicated its critical importance in regulating phagocyte function, inflammatory mediator production, and regulation of epithelial integrity and repair processes. Finally, HIF also appears to contribute to important features of tissue fibrosis and epithelial-to-mesenchymal transition, processes that are associated with tissue remodeling in various non-malignant chronic inflammatory disorders. In this review, we briefly summarize the current state of knowledge with respect to the general mechanisms involved in HIF regulation and the impact of NO on HIF activation. Secondly, we will summarize the major recent findings demonstrating a role for HIF signaling in infection, inflammation, and tissue repair and remodeling, and will address the involvement of NO. The growing interest in hypoxia-induced signaling and its relation with NO biology is expected to lead to further insights into the complex roles of NO in acute or chronic inflammatory diseases and may point to the importance of HIF signaling as key feature of NO-mediated events during these disorders.
Collapse
Affiliation(s)
- Nels Olson
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | |
Collapse
|
26
|
Intravascular and extravascular microvessel formation in chronic total occlusions a micro-CT imaging study. JACC Cardiovasc Imaging 2010; 3:797-805. [PMID: 20705258 DOI: 10.1016/j.jcmg.2010.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 01/06/2010] [Accepted: 03/01/2010] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The purpose of this study was to characterize the 3-dimensional structure of intravascular and extravascular microvessels during chronic total occlusion (CTO) maturation in a rabbit model. BACKGROUND Intravascular microchannels are an important component of a CTO and may predict guidewire crossability. However, temporal changes in the structure and geographic localization of these microvessels are poorly understood. METHODS A total of 39 occlusions were created in a rabbit femoral artery thrombin model. Animals were sacrificed at 2, 6, 12, and 24 weeks (n > or =8 occlusions per time point). The arteries were filled with a low viscosity radio-opaque polymer compound (Microfil) at 150 mm Hg pressure. Samples were scanned in a micro-computed tomography system to obtain high-resolution volumetric images. Analysis was performed in an image processing package that allowed for labeling of multiple materials. RESULTS Two distinct types of microvessels were observed: circumferentially oriented "extravascular" and longitudinally oriented "intravascular" microvessels. Extravascular microvessels were evident along the entire CTO length and maximal at the 2-week time point. There was a gradual and progressive reduction in extravascular microvessels over time, with very minimal microvessels evident beyond 12 weeks. In contrast, intravascular microvessel formation was delayed, with peak vascular volume at 6 weeks, followed by modest reductions at later time points. Intravascular microvessel formation was more prominent in the body compared with that in the proximal and distal ends of the CTO. Sharply angulated connections between the intravascular and extravascular microvessels were present at all time points, but most prominent at 6 weeks. At later time points, the individual intravascular microvessels became finer and more tortuous, although the continuity of these microvessels remained constant beyond 2 weeks. CONCLUSIONS Differences are present in the temporal and geographic patterns of intravascular and extravascular microvessel formation during CTO maturation.
Collapse
|
27
|
Fu H, Luo F, Yang L, Wu W, Liu X. Hypoxia stimulates the expression of macrophage migration inhibitory factor in human vascular smooth muscle cells via HIF-1alpha dependent pathway. BMC Cell Biol 2010; 11:66. [PMID: 20727156 PMCID: PMC2931459 DOI: 10.1186/1471-2121-11-66] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 08/20/2010] [Indexed: 02/05/2023] Open
Abstract
Background Hypoxia plays an important role in vascular remodeling and directly affects vascular smooth muscle cells (VSMC) functions. Macrophage migration inhibitory factor (MIF) is a well known proinflammatory factor, and recent evidence suggests an important role of MIF in the progression of atherosclerosis and restenosis. However, the potential link between hypoxia and MIF in VSMC has not been investigated. The current study was designed to test whether hypoxia could regulate MIF expression in human VSMC. The effect of modulating MIF expression on hypoxia-induced VSMC proliferation and migration was also investigated at the same time. Results Expression of MIF mRNA and protein was up-regulated as early as 2 hours in cultured human VSMCs after exposed to moderate hypoxia condition (3% O2). The up-regulation of MIF expression appears to be dependent on hypoxia-inducible transcription factor-1α(HIF-1α) since knockdown of HIF-1α inhibits the hypoxia induction of MIF gene and protein expression. The hypoxia induced expression of MIF was attenuated by antioxidant treatment as well as by inhibition of extracellular signal-regulated kinase (ERK). Under moderate hypoxia conditions (3% O2), both cell proliferation and cell migration were increased in VSMC cells. Blocking the MIF by specific small interference RNA to MIF (MIF-shRNA) resulted in the suppression of proliferation and migration of VSMCs. Conclusion Our results demonstrated that in VSMCs, hypoxia increased MIF gene expression and protein production. The hypoxia-induced HIF-1α activation, reactive oxygen species (ROS) generation and ERK activation might be involved in this response. Both MIF and HIF-1α mediated the hypoxia response of vascular smooth muscle cells, including cell migration and proliferation.
Collapse
Affiliation(s)
- Hua Fu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
28
|
Bitto A, De Caridi G, Polito F, Calò M, Irrera N, Altavilla D, Spinelli F, Squadrito F. Evidence for markers of hypoxia and apoptosis in explanted human carotid atherosclerotic plaques. J Vasc Surg 2010; 52:1015-21. [PMID: 20719466 DOI: 10.1016/j.jvs.2010.05.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/11/2010] [Accepted: 05/30/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Apoptosis and inflammation are important features of atherosclerotic plaques. We investigated whether a common signal molecule can trigger these two apparently separate pathways. Hypoxia inducible factor (HIF-1α) is known to participate in atherosclerosis and to stimulate apoptosis signal-regulating kinase 1 (ASK-1), one of the mitogen-activated protein kinases, which is activated by various extracellular stimuli and involved in a variety of cellular function. METHODS We tested carotid artery specimens from 50 subjects who underwent angioplasty and five age-matched controls for either Western blot or histologic analysis. The hypoxic status was investigated by means of HIF-1α expression in carotid specimens. RESULTS HIF-1α was significantly upregulated in carotid specimens with respect to controls (P < .05), ASK-1 was detected in plaques of any composition from lipidic to calcific, and this expression increased with the stage of the plaque and with the expression of inflammatory (p-ERK, RANK-L, OPG) and apoptotic molecules (caspase 9, p-p-38, and p-JNK). CONCLUSION Our data suggest that hypoxia is the key regulating factor that triggers inflammation as well as apoptosis in the human atherosclerotic plaque.
Collapse
Affiliation(s)
- Alessandra Bitto
- Department of Clinical and Experimental Medicine and Vascular Surgery, Section of Pharmacology, School of Medicine, Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sluimer JC, Daemen MJ. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. J Pathol 2009; 218:7-29. [PMID: 19309025 DOI: 10.1002/path.2518] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The clinical complications of atherosclerosis are caused by thrombus formation, which in turn results from rupture of an unstable atherosclerotic plaque. The formation of microvessels (angiogenesis) in an atherosclerotic plaque contributes to the development of plaques, increasing the risk of rupture. Microvessel content increases with human plaque progression and is likely stimulated by plaque hypoxia, reactive oxygen species and hypoxia-inducible factor (HIF) signalling. The presence of plaque hypoxia is primarily determined by plaque inflammation (increasing oxygen demand), while the contribution of plaque thickness (reducing oxygen supply) seems to be minor. Inflammation and hypoxia are almost interchangeable and both stimuli may initiate HIF-driven angiogenesis in atherosclerosis. Despite the scarcity of microvessels in animal models, atherogenesis is not limited in these models. This suggests that abundant plaque angiogenesis is not a requirement for atherogenesis and may be a physiological response to the pathophysiological state of the arterial wall. However, the destruction of the integrity of microvessel endothelium likely leads to intraplaque haemorrhage and plaques at increased risk for rupture. Although a causal relation between the compromised microvessel structure and atherogenesis or between angiogenic stimuli and plaque angiogenesis remains tentative, both plaque angiogenesis and plaque hypoxia represent novel targets for non-invasive imaging of plaques at risk for rupture, potentially permitting early diagnosis and/or risk prediction of patients with atherosclerosis in the near future.
Collapse
Affiliation(s)
- Judith C Sluimer
- Maastricht University Medical Centre, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
30
|
Slevin M, Kumar P, Wang Q, Kumar S, Gaffney J, Grau-Olivares M, Krupinski J. New VEGF antagonists as possible therapeutic agents in vascular disease. Expert Opin Investig Drugs 2008; 17:1301-14. [DOI: 10.1517/13543784.17.9.1301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Blaha M, Cermanova M, Blaha V, Jarolim P, Andrys C, Blazek M, Maly J, Smolej L, Zajic J, Masin V, Zimova R, Rehacek V. Elevated serum soluble endoglin (sCD105) decreased during extracorporeal elimination therapy for familial hypercholesterolemia. Atherosclerosis 2007; 224:4-11. [PMID: 17540382 DOI: 10.1016/j.atherosclerosis.2012.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/21/2012] [Accepted: 03/01/2012] [Indexed: 12/29/2022]
Abstract
Extracorporeal elimination is a method of LDL-lowering therapy that is used in severe familial hypercholesterolemia (FH) after other therapeutic approaches have failed. There are currently no universally accepted biomarkers that would allow determining necessary intensity of therapy and frequency of future therapeutic interventions. An ideal tool for immediate evaluation would be a readily measurable serum marker. We hypothesized that soluble endoglin (sCD105), a recently described indicator of endothelial dysfunction, may represent such a tool. Eleven patients with FH (three homozygous, eight heterozygous; Fredrickson type IIa, IIb) that have been monitored for 4.5+/-2.8 years were treated; eight by LDL-apheresis and three by hemorheopheresis. 40 sCD105 measurements were done, before and after two consecutive elimination procedures. Baseline serum sCD105 levels were significantly higher in the patients (5.74+/-1.47 microg/l in series I, 6.85+/-1.85 microg/l in series II) than in the control group (3.85+/-1.25 microg/l). They decreased to normal after LDL-elimination (p=0.0003) in all except for one patient. This return to normal was not due to a non-specific capture of endoglin in adsorption or filtration columns as demonstrated by measurement of sCD105 before and after passage through the elimination media. We conclude that the soluble endoglin levels in patients with severe FH remain elevated despite long-term intensive therapy and that they decrease after extracorporeal elimination. Endoglin can therefore serve as a marker for evaluation of the treatment efficacy and of the decreased atherosclerotic activity in patients with FH treated by extracorporeal LDL-cholesterol elimination.
Collapse
Affiliation(s)
- Milan Blaha
- 2nd Internal Clinic, Charles University School of Medicine and the Faculty Hospital, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|