1
|
Zhao N, Michelucci A, Pietrangelo L, Malik S, Groom L, Leigh J, O'Connor TN, Takano T, Kingsley PD, Palis J, Boncompagni S, Protasi F, Dirksen RT. An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease. EMBO J 2024:10.1038/s44318-024-00273-4. [PMID: 39420094 DOI: 10.1038/s44318-024-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience and Clinical Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
2
|
Katsuyama E, Humbel M, Suarez-Fueyo A, Satyam A, Yoshida N, Kyttaris VC, Tsokos MG, Tsokos GC. CD38 in SLE CD4 T cells promotes Ca 2+ flux and suppresses interleukin-2 production by enhancing the expression of GM2 on the surface membrane. Nat Commun 2024; 15:8304. [PMID: 39333474 PMCID: PMC11436706 DOI: 10.1038/s41467-024-52617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
CD38 has emerged as a potential therapeutic target for patients with systemic lupus erythematosus (SLE) but it is not known whether CD38 alters CD4+ T cell function. Using primary human T cells and CD38-sufficient and CD38-deficient Jurkat T cells, we demonstrate that CD38 shifts the T cell lipid profile of gangliosides from GM3 to GM2 by upregulating B4GALNT1 in a Sirtuin 1-dependent manner. Enhanced expression of GM2 causes ER stress by enhancing Ca2+ flux through the PLCγ1-IP3 pathway. Interestingly, correction of the calcium overload by an IP3 receptor inhibitor, but not by a store-operated calcium entry (SOCE) inhibitor, improves IL-2 production by CD4+ T cells in SLE. This study demonstrates that CD38 affects calcium homeostasis in CD4+ T cells by controlling cell membrane lipid composition that results in suppressed IL-2 production. CD38 inhibition with biologics or small drugs should be expected to benefit patients with SLE.
Collapse
Affiliation(s)
- Eri Katsuyama
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Morgane Humbel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abel Suarez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Vasileios C Kyttaris
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
3
|
Manhas N. Computational Model of Complex Calcium Dynamics: Store Operated Ca 2+ Channels and Mitochondrial Associated Membranes in Pancreatic Acinar Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01484-6. [PMID: 39266873 DOI: 10.1007/s12013-024-01484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
This proposed model explores the intricate Ca2+ dynamics within the pancreatic acinar cells (PACs) by emphasizing the role of store-operated Ca2+ entry (SOCE) and the mitochondrial-associated membranes (MAMs) in the secretory region (apical) of the PACs. Traditionally, Ca2+ releases from the endoplasmic reticulum (ER) via calcium-induced calcium release (CICR). It has been shown to be important in regulating functions such as secretion of digestive enzymes in PACs. However, this model posits that upon the depletion of Ca2+ in the ER, the signaling protein stromal interaction molecule (STIM1) is activated. Activated STIM1, then facilitates the opening of Orai channels, allowing Ca2+ influx through the store-operated calcium channels (SOCCs). The model highlights the complexity of the Ca2+ dynamics, and the importance of SOCE and MAMs in the PACs Ca2+ homeostasis. The numerical and bifurcation analysis illustrate how changes in agonist concentrations can lead to the diverse Ca2+ oscillation patterns, such as thin to broader oscillations, sinusoidal patterns, and baseline fluctuations, driven by the feedback mechanisms involving Ca2+ and inositol 1,4,5 trisphosphate (IP3). This understanding could have broader implications for cellular physiology and the development of therapies targeting Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Neeraj Manhas
- Department of Mathematics, National Institute of Technology, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
4
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria
| |
Collapse
|
5
|
Carreras-Sureda A, Zhang X, Laubry L, Brunetti J, Koenig S, Wang X, Castelbou C, Hetz C, Liu Y, Frieden M, Demaurex N. The ER stress sensor IRE1 interacts with STIM1 to promote store-operated calcium entry, T cell activation, and muscular differentiation. Cell Rep 2023; 42:113540. [PMID: 38060449 DOI: 10.1016/j.celrep.2023.113540] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) mediated by stromal interacting molecule (STIM)-gated ORAI channels at endoplasmic reticulum (ER) and plasma membrane (PM) contact sites maintains adequate levels of Ca2+ within the ER lumen during Ca2+ signaling. Disruption of ER Ca2+ homeostasis activates the unfolded protein response (UPR) to restore proteostasis. Here, we report that the UPR transducer inositol-requiring enzyme 1 (IRE1) interacts with STIM1, promotes ER-PM contact sites, and enhances SOCE. IRE1 deficiency reduces T cell activation and human myoblast differentiation. In turn, STIM1 deficiency reduces IRE1 signaling after store depletion. Using a CaMPARI2-based Ca2+ genome-wide screen, we identify CAMKG2 and slc105a as SOCE enhancers during ER stress. Our findings unveil a direct crosstalk between SOCE and UPR via IRE1, acting as key regulator of ER Ca2+ and proteostasis in T cells and muscles. Under ER stress, this IRE1-STIM1 axis boosts SOCE to preserve immune cell functions, a pathway that could be targeted for cancer immunotherapy.
Collapse
Affiliation(s)
- Amado Carreras-Sureda
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.
| | - Xin Zhang
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Loann Laubry
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jessica Brunetti
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Stéphane Koenig
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Xiaoxia Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Suk G, Kwon DH, Roers A, Abraham SN, Choi HW. Stabilization of activated mast cells by ORAI1 inhibitor suppresses peanut-induced anaphylaxis and acute diarrhea. Pharmacol Res 2023; 196:106887. [PMID: 37574155 DOI: 10.1016/j.phrs.2023.106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Mast cell (MC) activation triggered by immunoglobulin E (IgE)-antigen crosslinking involves intracellular Ca2+ influx through the ORAI1 channel, which precedes granule exteriorization and de novo synthesis of mediators. Pharmacologically suppressing MCs via the inhibition of the ORAI1 Ca2+ channel may represent a potential strategy for preventing anaphylaxis. This study demonstrated that peanut-induced anaphylaxis in sensitized mice resulted in significant hypothermia and acute diarrhea. Utilizing the Mcpt5cre-DTA mouse model, we demonstrated that this anaphylactic response was mediated by IgE-antigen-induced MC activation. Prophylactic administration of MC suppressors was an effective means of preventing peanut-induced anaphylaxis. In addition, we observed the potent efficacy of an ORAI1 inhibitor in suppressing the FcεRI-mediated response of murine or human MCs, even when administered concurrently or post-allergen exposure. Mechanistically, the ORAI1 inhibitor was found to prevent the association of Synaptotagmin-2 with the SNARE complex. In an in vivo mouse model of peanut-induced anaphylaxis, the administration of the ORAI1 inhibitor after allergen challenge effectively suppressed allergic acute diarrhea and ameliorated anaphylaxis. Therefore, pharmacological intervention of ORAI1 channel inhibition in MCs represents a promising therapeutic avenue for the treatment of peanut-induced anaphylaxis and acute diarrhea in vivo.
Collapse
Affiliation(s)
- Gyeongseo Suk
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Do Hoon Kwon
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden 01069, Germany
| | - Soman N Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA; Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Pan C, He Y, Wang H, Yu Y, Li L, Huang L, Lyu M, Ge W, Yang B, Sun Y, Guo T, Liu Z. Identifying Patients With Rapid Progression From Hormone-Sensitive to Castration-Resistant Prostate Cancer: A Retrospective Study. Mol Cell Proteomics 2023; 22:100613. [PMID: 37394064 PMCID: PMC10491655 DOI: 10.1016/j.mcpro.2023.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
Prostate cancer (PCa) is the second most prevalent malignancy and the fifth cause of cancer-related deaths in men. A crucial challenge is identifying the population at risk of rapid progression from hormone-sensitive prostate cancer (HSPC) to lethal castration-resistant prostate cancer (CRPC). We collected 78 HSPC biopsies and measured their proteomes using pressure cycling technology and a pulsed data-independent acquisition pipeline. We quantified 7355 proteins using these HSPC biopsies. A total of 251 proteins showed differential expression between patients with a long- or short-term progression to CRPC. Using a random forest model, we identified seven proteins that significantly discriminated long- from short-term progression patients, which were used to classify PCa patients with an area under the curve of 0.873. Next, one clinical feature (Gleason sum) and two proteins (BGN and MAPK11) were found to be significantly associated with rapid disease progression. A nomogram model using these three features was generated for stratifying patients into groups with significant progression differences (p-value = 1.3×10-4). To conclude, we identified proteins associated with a fast progression to CRPC and an unfavorable prognosis. Based on these proteins, our machine learning and nomogram models stratified HSPC into high- and low-risk groups and predicted their prognoses. These models may aid clinicians in predicting the progression of patients, guiding individualized clinical management and decisions.
Collapse
Affiliation(s)
- Chenxi Pan
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yi He
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China
| | - He Wang
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yang Yu
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lu Li
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lingling Huang
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, China
| | - Mengge Lyu
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co., Ltd, Hangzhou, China
| | - Bo Yang
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China.
| | - Yaoting Sun
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| | - Tiannan Guo
- Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Zhiyu Liu
- Department of Urology, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Gerasimenko JV, Gerasimenko OV. The role of Ca 2+ signalling in the pathology of exocrine pancreas. Cell Calcium 2023; 112:102740. [PMID: 37058923 PMCID: PMC10840512 DOI: 10.1016/j.ceca.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Exocrine pancreas has been the field of many successful studies in pancreatic physiology and pathology. However, related disease - acute pancreatitis (AP) is still takes it toll with more than 100,000 related deaths worldwide per year. In spite of significant scientific progress and several human trials currently running for AP, there is still no specific treatment in the clinic. Studies of the mechanism of initiation of AP have identified two crucial conditions: sustained elevations of cytoplasmic calcium concentration (Ca2+ plateau) and significantly reduced intracellular energy (ATP depletion). These hallmarks are interdependent, i.e., Ca2+ plateau increase energy demand for its clearance while energy production is greatly affected by the pathology. Result of long standing Ca2+ plateau is destabilisation of the secretory granules and premature activation of the digestive enzymes leading to necrotic cell death. Main attempts so far to break the vicious circle of cell death have been concentrated on reduction of Ca2+ overload or reduction of ATP depletion. This review will summarise these approaches, including recent developments of potential therapies for AP.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom.
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom
| |
Collapse
|
9
|
Zhang Z, Wang Z, Liu Y, Zhao L, Fu W. Stromal Interaction Molecule 1 (STIM1) is a Potential Prognostic Biomarker and Correlates with Immune Infiltrates in Solid Tumors. J Environ Pathol Toxicol Oncol 2023; 42:11-30. [PMID: 36749087 DOI: 10.1615/jenvironpatholtoxicoloncol.2022043693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Increasing evidence has shown that stromal interaction molecule 1 (STIM1), a key subunit of store-operated Ca2+ entry (SOCE), is closely associated with tumor growth, development, and metastasis. However, there is no report of a comprehensive assessment of STIM1 in pan-cancer. This study aimed to perform a general analysis of STIM1 in human tumors, including its molecular characteristics, functional mechanisms, clinical significance, and immune infiltrates correlation based on pan-cancer data from The Cancer Genome Atlas (TCGA). Gene expression analysis was investigated using TCGA RNA-seq data, the Tumor Immune Estimation Resource (TIMER). Phosphorylation analysis was undertaken using the Clinical Proteomic Tumor Analysis Consortium (CP-TAC) and the PhosphoNET database. Genetic alterations of STIM1 were analyzed using cBioPortal. Prognostic analysis was via the R package "survival" function and the Kaplan-Meier plotter. Functional enrichment analysis was via by the R package "cluster Profiler" function. The association between STIM1 and tumor-infiltrating immune cells and immune markers was by the R package "GSVA" function and TIMER. STIM1 was differentially expressed and associated with distinct clinical stages in multiple tumors. The phosphorylation of STIM1 at S673 is highly expressed in clear cell renal carcinoma and lung adenocarcinoma tumors compared to normal tissues. STIM1 genetic alterations correlate with poor prognosis in several tumors, including ovarian cancer and lung squamous cell carcinomas. High STIM1 expression is associated with good or poor prognosis across diverse tumors. Overall survival (OS) analysis indicated that STIM1 is a favorable prognostic factor for patients with BRCA, KIRC, LIHC, LUAD, OV, SARC, and UCEC, and is a risk prognostic factor for BLCA, KIRP, STAD, and UVM. There is a close correlation between STIM1 expression and immune cell infiltration, immune-regulated genes, chemokines, and immune checkpoints in a variety of tumors. STIM1 functions differently in diverse tumors, playing an oncogenic or antitumor role. Moreover, It may serve as a prognostic biomarker and an immunotherapy target across multiple tumors.
Collapse
Affiliation(s)
- Zichao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Zhihui Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of General Surgery, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yumeng Liu
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Li Zhao
- Department of General Surgery, First Hospital of Tsinghua University, Beijing 100016, China
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Faouzi M, Wakano C, Monteilh-Zoller MK, Neupane RP, Starkus JG, Neupane JB, Cullen AJ, Johnson BE, Fleig A, Penner R. Acidic Cannabinoids Suppress Proinflammatory Cytokine Release by Blocking Store-operated Calcium Entry. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac033. [PMID: 35910331 PMCID: PMC9334010 DOI: 10.1093/function/zqac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/07/2023]
Abstract
Cannabis sativa has long been known to affect numerous biological activities. Although plant extracts, purified cannabinoids, or synthetic cannabinoid analogs have shown therapeutic potential in pain, inflammation, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting, the underlying mechanisms of action remain ill-defined. In this study we provide the first comprehensive overview of the effects of whole-plant Cannabis extracts and various pure cannabinoids on store-operated calcium (Ca2+) entry (SOCE) in several different immune cell lines. Store-operated Ca2+ entry is one of the most significant Ca2+ influx mechanisms in immune cells, and it is critical for the activation of T lymphocytes, leading to the release of proinflammatory cytokines and mediating inflammation and T cell proliferation, key mechanisms for maintaining chronic pain. While the two major cannabinoids cannabidiol and trans-Δ9-tetrahydrocannabinol were largely ineffective in inhibiting SOCE, we report for the first time that several minor cannabinoids, mainly the carboxylic acid derivatives and particularly cannabigerolic acid, demonstrated high potency against SOCE by blocking calcium release-activated calcium currents. Moreover, we show that this inhibition of SOCE resulted in a decrease of nuclear factor of activated T-cells activation and Interleukin 2 production in human T lymphocytes. Taken together, these results indicate that cannabinoid-mediated inhibition of a proinflammatory target such as SOCE may at least partially explain the anti-inflammatory and analgesic effects of Cannabis.
Collapse
Affiliation(s)
| | | | | | - Ram P Neupane
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - John G Starkus
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | | | - Aaron J Cullen
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Brandon E Johnson
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA
| | - Andrea Fleig
- Center for Biomedical Research, The Queen's Medical Center, Honolulu, HI 96813, USA,Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | |
Collapse
|
11
|
Martínez-Lazcano JC, González-Guevara E, Boll C, Cárdenas G. Gut dysbiosis and homocysteine: a couple for boosting neurotoxicity in Huntington disease. Rev Neurosci 2022; 33:819-827. [PMID: 35411760 DOI: 10.1515/revneuro-2021-0164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
Huntington's disease (HD), a neurodegenerative disorder caused by an expansion of the huntingtin triplet (Htt), is clinically characterized by cognitive and neuropsychiatric alterations. Although these alterations appear to be related to mutant Htt (mHtt)-induced neurotoxicity, several other factors are involved. The gut microbiota is a known modulator of brain-gut communication and when altered (dysbiosis), several complaints can be developed including gastrointestinal dysfunction which may have a negative impact on cognition, behavior, and other mental functions in HD through several mechanisms, including increased levels of lipopolysaccharide, proinflammatory cytokines and immune cell response, as well as alterations in Ca2+ signaling, resulting in both increased intestinal and blood-brain barrier (BBB) permeability. Recently, the presence of dysbiosis has been described in both transgenic mouse models and HD patients. A bidirectional influence between host brain tissues and the gut microbiota has been observed. On the one hand, the host diet influences the composition and function of microbiota; and on the other hand, microbiota products can affect BBB permeability, synaptogenesis, and the regulation of neurotransmitters and neurotrophic factors, which has a direct effect on host metabolism and brain function. This review summarizes the available evidence on the pathogenic synergism of dysbiosis and homocysteine, and their role in the transgression of BBB integrity and their potential neurotoxicity of HD.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Lazcano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Edith González-Guevara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Catherine Boll
- Laboratorio de Investigación clínica, Clínica de Ataxias y Coreas, Enfermedades Neurodegenerativas Raras, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| | - Graciela Cárdenas
- Departamento de Neurología y Enfermedades Neuro-Infecciosas, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico City 14629, Mexico
| |
Collapse
|
12
|
Chaki S, Alkanfari I, Roy S, Amponnawarat A, Hui Y, Oskeritzian CA, Ali H. Inhibition of Orai Channel Function Regulates Mas-Related G Protein-Coupled Receptor-Mediated Responses in Mast Cells. Front Immunol 2022; 12:803335. [PMID: 35126366 PMCID: PMC8810828 DOI: 10.3389/fimmu.2021.803335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are tissue resident immune cells that play important roles in the pathogenesis of allergic disorders. These responses are mediated via the cross-linking of cell surface high affinity IgE receptor (FcϵRI) by antigen resulting in calcium (Ca2+) mobilization, followed by degranulation and release of proinflammatory mediators. In addition to FcϵRI, cutaneous MCs express Mas-related G protein-coupled receptor X2 (MRGPRX2; mouse ortholog MrgprB2). Activation of MRGPRX2/B2 by the neuropeptide substance P (SP) is implicated in neurogenic inflammation, chronic urticaria, mastocytosis and atopic dermatitis. Although Ca2+ entry is required for MRGPRX2/B2-mediated MC responses, the possibility that calcium release-activated calcium (CRAC/Orai) channels participate in these responses has not been tested. Lentiviral shRNA-mediated silencing of Orai1, Orai2 or Orai3 in a human MC line (LAD2 cells) resulted in partial inhibition of SP-induced Ca2+ mobilization, degranulation and cytokine/chemokine generation (TNF-α, IL-8, and CCL-3). Synta66, which blocks homo and hetero-dimerization of Orai channels, caused a more robust inhibition of SP-induced responses than knockdown of individual Orai channels. Synta66 also blocked SP-induced extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt phosphorylation and abrogated cytokine/chemokine production. It also inhibited SP-induced Ca2+ mobilization and degranulation in primary human skin MCs and mouse peritoneal MCs. Furthermore, Synta66 attenuated both SP-induced cutaneous vascular permeability and leukocyte recruitment in mouse peritoneum. These findings demonstrate that Orai channels contribute to MRGPRX2/B2-mediated MC activation and suggest that their inhibition could provide a novel approach for the modulation of SP-induced MC/MRGPRX2-mediated disorders.
Collapse
Affiliation(s)
- Shaswati Chaki
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Ibrahim Alkanfari
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
- Faculty of Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Saptarshi Roy
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| | - Aetas Amponnawarat
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Carole A. Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hydar Ali
- Department of Basic and Translational Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, United States
| |
Collapse
|
13
|
Adriawan IR, Atschekzei F, Dittrich-Breiholz O, Garantziotis P, Hirsch S, Risser LM, Kosanke M, Schmidt RE, Witte T, Sogkas G. Novel aspects of regulatory T cell dysfunction as a therapeutic target in giant cell arteritis. Ann Rheum Dis 2022; 81:124-131. [PMID: 34583923 PMCID: PMC8762021 DOI: 10.1136/annrheumdis-2021-220955] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is the most common primary vasculitis, preferentially affecting the aorta and its large-calibre branches. An imbalance between proinflammatory CD4+ T helper cell subsets and regulatory T cells (Tregs) is thought to be involved in the pathogenesis of GCA and Treg dysfunction has been associated with active disease. Our work aims to explore the aetiology of Treg dysfunction and the way it is affected by remission-inducing immunomodulatory regimens. METHODS A total of 41 GCA patients were classified into active disease (n=14) and disease in remission (n=27). GCA patients' and healthy blood donors' (HD) Tregs were sorted and subjected to transcriptome and phenotypic analysis. RESULTS Transcriptome analysis revealed 27 genes, which were differentially regulated between GCA-derived and HD-derived Tregs. Among those, we identified transcription factors, glycolytic enzymes and IL-2 signalling mediators. We confirmed the downregulation of forkhead box P3 (FOXP3) and interferon regulatory factor 4 (IRF4) at protein level and identified the ineffective induction of glycoprotein A repetitions predominant (GARP) and CD25 as well as the reduced T cell receptor (TCR)-induced calcium influx as correlates of Treg dysfunction in GCA. Inhibition of glycolysis in HD-derived Tregs recapitulated most identified dysfunctions of GCA Tregs, suggesting the central pathogenic role of the downregulation of the glycolytic enzymes. Separate analysis of the subgroup of tocilizumab-treated patients identified the recovery of the TCR-induced calcium influx and the Treg suppressive function to associate with disease remission. CONCLUSIONS Our findings suggest that low glycolysis and calcium signalling account for Treg dysfunction and inflammation in GCA.
Collapse
Affiliation(s)
- Ignatius Ryan Adriawan
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Faranaz Atschekzei
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | | | | | - Stefanie Hirsch
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | | | - Maike Kosanke
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Reinhold Ernst Schmidt
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST, Hannover Medical School, Hannover, Germany
| |
Collapse
|
14
|
Wang YS, Huang NK, Lin YC, Chang WC, Huang WC. Aspirin and Sulindac act via different mechanisms to inhibit store-operated calcium channel: Implications for colorectal cancer metastasis. Biomed Pharmacother 2021; 145:112476. [PMID: 34864310 DOI: 10.1016/j.biopha.2021.112476] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023] Open
Abstract
Store-operated Ca2+ channel (SOC)-regulated Ca2+ entry is involved in inflammation and colorectal cancer (CRC) progression, but clinically applicable treatments targeting this mechanism are lacking. Recent studies have shown that nonsteroidal anti-inflammatory drugs (NSAIDs) not only inhibit inflammation but they also suppress Ca2+ entry via SOC (SOCE). Therefore, delineating the mechanisms of SOCE inhibition by NSAIDs may lead to new CRC treatments. In this study, we tested eight candidate NSAIDs in Ca2+ imaging experiments and found that Aspirin and Sulindac were the most effective at suppressing SOCE. Furthermore, time-lapse FRET imaging using TIRF microscopy and ground state depletion (GSD) super-resolution (SR) imaging revealed that SOC was inhibited by Aspirin and Sulindac via different mechanisms. Aspirin quickly interrupted the STIM1-Orai1 interaction, whereas Sulindac mainly suppressed STIM1 translocation. Additionally, Aspirin and Sulindac both inhibited metastasis-related endpoints in CRC cells. Both drugs were used throughout the study at doses that suppressed CRC cell migration and invasion without altering cell survival. This is the first study to reveal the differential inhibitory mechanisms of Aspirin and Sulindac on SOC activity. Thus, our results shed new light on the therapeutic potential of Aspirin for CRC and SOCE-related diseases.
Collapse
Affiliation(s)
- Yu-Shiuan Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC
| | - Nai-Kuei Huang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Beitou District, Taipei 112, Taiwan, ROC
| | - Yu-Chiao Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Zhongzheng District, Taipei 100, Taiwan, ROC
| | - Wei-Chiao Chang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Xinyi District, Taipei 110, Taiwan, ROC; Department of Pharmacy, Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Wenshan District, Taipei 116, Taiwan, ROC; Department of Pharmacology, National Defense Medical Center, Neihu District, Taipei 114, Taiwan, ROC.
| | - Wan-Chen Huang
- Single-Molecule Biology Core Lab, Institute of Cellular and Organismic Biology, Academia Sinica, Nankang District, Taipei 115, Taiwan, ROC; Institute of Medical Device and Imaging, National Taiwan University, Zhongzheng District, Taipei 100, Taiwan, ROC.
| |
Collapse
|
15
|
Nan J, Li J, Lin Y, Saif Ur Rahman M, Li Z, Zhu L. The interplay between mitochondria and store-operated Ca 2+ entry: Emerging insights into cardiac diseases. J Cell Mol Med 2021; 25:9496-9512. [PMID: 34564947 PMCID: PMC8505841 DOI: 10.1111/jcmm.16941] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/20/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Store‐operated Ca2+ entry (SOCE) machinery, including Orai channels, TRPCs, and STIM1, is key to cellular calcium homeostasis. The following characteristics of mitochondria are involved in the physiological and pathological regulation of cells: mitochondria mediate calcium uptake through calcium uniporters; mitochondria are regulated by mitochondrial dynamic related proteins (OPA1, MFN1/2, and DRP1) and form mitochondrial networks through continuous fission and fusion; mitochondria supply NADH to the electron transport chain through the Krebs cycle to produce ATP; under stress, mitochondria will produce excessive reactive oxygen species to regulate mitochondria‐endoplasmic reticulum interactions and the related signalling pathways. Both SOCE and mitochondria play critical roles in mediating cardiac hypertrophy, diabetic cardiomyopathy, and cardiac ischaemia‐reperfusion injury. All the mitochondrial characteristics mentioned above are determinants of SOCE activity, and vice versa. Ca2+ signalling dictates the reciprocal regulation between mitochondria and SOCE under the specific pathological conditions of cardiomyocytes. The coupling of mitochondria and SOCE is essential for various pathophysiological processes in the heart. Herein, we review the research focussing on the reciprocal regulation between mitochondria and SOCE and provide potential interplay patterns in cardiac diseases.
Collapse
Affiliation(s)
- Jinliang Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Jiamin Li
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Muhammad Saif Ur Rahman
- Zhejiang University-University of Edinburgh Biomedical Institute, Haining, Zhejiang, China.,Clinical Research Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengzheng Li
- Department of Neurology, Research Institute of Experimental Neurobiology, The First Affiliated Hospital, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Lingjun Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou, China
| |
Collapse
|
16
|
Tiffner A, Derler I. Isoform-Specific Properties of Orai Homologues in Activation, Downstream Signaling, Physiology and Pathophysiology. Int J Mol Sci 2021; 22:8020. [PMID: 34360783 PMCID: PMC8347056 DOI: 10.3390/ijms22158020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/21/2022] Open
Abstract
Ca2+ ion channels are critical in a variety of physiological events, including cell growth, differentiation, gene transcription and apoptosis. One such essential entry pathway for calcium into the cell is the Ca2+ release-activated Ca2+ (CRAC) channel. It consists of the Ca2+ sensing protein, stromal interaction molecule 1 (STIM1) located in the endoplasmic reticulum (ER) and a Ca2+ ion channel Orai in the plasma membrane. The Orai channel family includes three homologues Orai1, Orai2 and Orai3. While Orai1 is the "classical" Ca2+ ion channel within the CRAC channel complex and plays a universal role in the human body, there is increasing evidence that Orai2 and Orai3 are important in specific physiological and pathophysiological processes. This makes them an attractive target in drug discovery, but requires a detailed understanding of the three Orai channels and, in particular, their differences. Orai channel activation is initiated via Ca2+ store depletion, which is sensed by STIM1 proteins, and induces their conformational change and oligomerization. Upon STIM1 coupling, Orai channels activate to allow Ca2+ permeation into the cell. While this activation mechanism is comparable among the isoforms, they differ by a number of functional and structural properties due to non-conserved regions in their sequences. In this review, we summarize the knowledge as well as open questions in our current understanding of the three isoforms in terms of their structure/function relationship, downstream signaling and physiology as well as pathophysiology.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
17
|
Store-operated Ca 2+ entry as a key oncogenic Ca 2+ signaling driving tumor invasion-metastasis cascade and its translational potential. Cancer Lett 2021; 516:64-72. [PMID: 34089807 DOI: 10.1016/j.canlet.2021.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Tumor metastasis is the primary cause of treatment failure and cancer-related deaths. Store-operated Ca2+ entry (SOCE), which is mediated by stromal interaction molecules (STIM) and ORAI proteins, has been implicated in the tumor invasion-metastasis cascade. Epithelial-mesenchymal transition (EMT) is a cellular program that enables tumor cells to acquire the capacities needed for migration and invasion and the formation of distal metastases. Tumor-associated angiogenesis contributes to metastasis because aberrantly developed vessels offer a path for tumor cell dissemination as well as supply sufficient nutrients for the metastatic colony to develop into metastasis. Recently, increasing evidence has indicated that SOCE alterations actively participate in the multi-step process of tumor metastasis. In addition, the dysregulated expression of STIM/ORAI has been reported to be a predictor of poor prognosis. Herein, we review the latest advances about the critical role of SOCE in the tumor metastasis cascade and the underlying regulatory mechanisms. We emphasize the contributions of SOCE to the EMT program, tumor cell migration and invasion, and angiogenesis. We further discuss the possibility of modulating SOCE or intervening in the downstream signaling pathways as a feasible targeting therapy for cancer treatment.
Collapse
|
18
|
Steele HR, Han L. The signaling pathway and polymorphisms of Mrgprs. Neurosci Lett 2020; 744:135562. [PMID: 33388356 DOI: 10.1016/j.neulet.2020.135562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Mas-related G protein-coupled receptors (Mrgprs) are a family of receptors implicated in a diverse array of human diseases. Since their discovery in 2001, great progress has been made in determining their relation to human disease. Vital for Mrgprs therapeutic efforts across all disease disciplines is a thorough understanding of Mrgprs signal transduction pathways and polymorphisms, as these offer insights into new drug candidates, existing discrepancies in drug response, and differences in disease susceptibility. In this review, we discuss the current state of knowledge regarding Mrgprs signaling pathways and polymorphisms.
Collapse
Affiliation(s)
- Haley R Steele
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Liang Han
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
19
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
20
|
Chaudhari S, Mallet RT, Shotorbani PY, Tao Y, Ma R. Store-operated calcium entry: Pivotal roles in renal physiology and pathophysiology. Exp Biol Med (Maywood) 2020; 246:305-316. [PMID: 33249888 DOI: 10.1177/1535370220975207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Research conducted over the last two decades has dramatically advanced the understanding of store-operated calcium channels (SOCC) and their impact on renal function. Kidneys contain many types of cells, including those specialized for glomerular filtration (fenestrated capillary endothelium, podocytes), water and solute transport (tubular epithelium), and regulation of glomerular filtration and renal blood flow (vascular smooth muscle cells, mesangial cells). The highly integrated function of these myriad cells effects renal control of blood pressure, extracellular fluid volume and osmolality, electrolyte balance, and acid-base homeostasis. Many of these cells are regulated by Ca2+ signaling. Recent evidence demonstrates that SOCCs are major Ca2+ entry portals in several renal cell types. SOCC is activated by depletion of Ca2+ stores in the sarco/endoplasmic reticulum, which communicates with plasma membrane SOCC via the Ca2+ sensor Stromal Interaction Molecule 1 (STIM1). Orai1 is recognized as the main pore-forming subunit of SOCC in the plasma membrane. Orai proteins alone can form highly Ca2+ selective SOCC channels. Also, members of the Transient Receptor Potential Canonical (TRPC) channel family are proposed to form heteromeric complexes with Orai1 subunits, forming SOCC with low Ca2+ selectivity. Recently, Ca2+ entry through SOCC, known as store-operated Ca2+ entry (SOCE), was identified in glomerular mesangial cells, tubular epithelium, and renovascular smooth muscle cells. The physiological and pathological relevance and the characterization of SOCC complexes in those cells are still unclear. In this review, we summarize the current knowledge of SOCC and their roles in renal glomerular, tubular and vascular cells, including studies from our laboratory, emphasizing SOCE regulation of fibrotic protein deposition. Understanding the diverse roles of SOCE in different renal cell types is essential, as SOCC and its signaling pathways are emerging targets for treatment of SOCE-related diseases.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
21
|
Vaeth M, Kahlfuss S, Feske S. CRAC Channels and Calcium Signaling in T Cell-Mediated Immunity. Trends Immunol 2020; 41:878-901. [PMID: 32711944 DOI: 10.1016/j.it.2020.06.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022]
Abstract
Calcium (Ca2+) signals play fundamental roles in immune cell function. The main sources of Ca2+ influx in mammalian lymphocytes following antigen receptor stimulation are Ca2+ release-activated Ca2+ (CRAC) channels. These are formed by ORAI proteins in the plasma membrane and are activated by stromal interaction molecules (STIM) located in the endoplasmic reticulum (ER). Human loss-of-function (LOF) mutations in ORAI1 and STIM1 that abolish Ca2+ influx cause a unique disease syndrome called CRAC channelopathy that is characterized by immunodeficiency autoimmunity and non-immunological symptoms. Studies in mice lacking Stim and Orai genes have illuminated many cellular and molecular mechanisms by which these molecules control lymphocyte function. CRAC channels are required for the differentiation and function of several T lymphocyte subsets that provide immunity to infection, mediate inflammation and prevent autoimmunity. This review examines new insights into how CRAC channels control T cell-mediated immunity.
Collapse
Affiliation(s)
- Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Health Campus Immunology, Infectiology, and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
22
|
Chaudhari S, Yazdizadeh Shotorbani P, Tao Y, Davis ME, Mallet RT, Ma R. Inhibition of interleukin-6 on matrix protein production by glomerular mesangial cells and the pathway involved. Am J Physiol Renal Physiol 2020; 318:F1478-F1488. [PMID: 32390515 DOI: 10.1152/ajprenal.00043.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Activation of immunological pathways and disturbances of extracellular matrix (ECM) dynamics are important contributors to the pathogenesis of chronic kidney diseases. Glomerular mesangial cells (MCs) are critical for homeostasis of glomerular ECM dynamics. Interleukin-6 (IL-6) can act as a pro/anti-inflammatory agent relative to cell types and conditions. This study investigated whether IL-6 influences ECM protein production by MCs and the regulatory pathways involved. Experiments were carried out in cultured human MCs (HMCs) and in mice. We found that overexpression of IL-6 and its receptor decreased the abundance of fibronectin and collagen type IV in MCs. ELISA and immunoblot analysis demonstrated that thapsigargin [an activator of store-operated Ca2+ entry (SOCE)], but not the endoplasmic reticulum stress inducer tunicamycin, significantly increased IL-6 content. This thapsigargin effect was abolished by GSK-7975A, a selective inhibitor of SOCE, and by silencing Orai1 (the channel protein mediating SOCE). Furthermore, inhibition of NF-κB pharmacologically and genetically significantly reduced SOCE-induced IL-6 production. Thapsigargin also stimulated nuclear translocation of the p65 subunit of NF-κB. Moreover, MCs overexpressing IL-6 and its receptor in HMCs increased the content of the glucagon-like peptide-1 receptor (GLP-1R), and IL-6 inhibition of fibronectin was attenuated by the GLP-1R antagonist exendin 9-39. In agreement with the HMC data, specific knockdown of Orai1 in MCs using the targeted nanoparticle delivery system in mice significantly reduced glomerular GLP-1R levels. Taken together, our results suggest a novel SOCE/NF-κB/IL-6/GLP-1R signaling pathway that inhibits ECM protein production by MCs.
Collapse
Affiliation(s)
- Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | | | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
23
|
Dhande IS, Zhu Y, Kneedler SC, Joshi AS, Hicks MJ, Wenderfer SE, Braun MC, Doris PA. Stim1 Polymorphism Disrupts Immune Signaling and Creates Renal Injury in Hypertension. J Am Heart Assoc 2020; 9:e014142. [PMID: 32075490 PMCID: PMC7335582 DOI: 10.1161/jaha.119.014142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Spontaneously hypertensive rats of the stroke‐prone line (SHR‐A3) develop hypertensive renal disease as a result of naturally occurring genetic variation. Our prior work identified a single‐nucleotide polymorphism unique to SHR‐A3 that results in truncation of the carboxy terminus of STIM1. The SHR‐B2 line, which is also hypertensive but resists hypertensive renal injury, expresses the wild‐type STIM1. STIM1 plays a central role in lymphocyte calcium signaling that directs immune effector responses. Here we show that major defects in lymphocyte function affecting calcium signaling, nuclear factor of activated T cells activation, cytokine production, proliferation, apoptosis, and regulatory T‐cell development are present in SHR‐A3 and attributable to STIM1. Methods and Results To assess the role of Stim1 variation in susceptibility to hypertensive renal injury, we created a Stim1 congenic line, SHR‐A3(Stim1‐B2), and STIM1 function was rescued in SHR‐A3. We found that Stim1 gene rescue restores disturbed lymphocyte function in SHR‐A3. Hypertensive renal injury was compared in SHR‐A3 and the SHR‐A3(Stim1‐B2) congenic line. Histologically assessed renal injury was markedly reduced in SHR‐A3(Stim1‐B2), as were renal injury biomarker levels measured in urine. Stim1 deficiency has been linked to the emergence of antibody‐mediated autoimmunity. Renal glomerular immunoglobulin deposition was greater in SHR‐A3 than SHR‐B2 and was reduced by Stim1 congenic substitution. Serum anti–double‐stranded DNA antibody titers in SHR‐A3 were elevated compared with SHR‐B2 and were reduced in SHR‐A3(Stim1‐B2). Conclusions Stim1 deficiency in lymphocyte function originating from Stim1 truncation in SHR‐A3 combines with hypertension to create end organ disease and may do so as a result of antibody formation.
Collapse
Affiliation(s)
- Isha S Dhande
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Yaming Zhu
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Sterling C Kneedler
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - Aniket S Joshi
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| | - M John Hicks
- Department of Pathology and Immunology Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Scott E Wenderfer
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Michael C Braun
- Department of Pediatrics Baylor College of Medicine and Texas Children's Hospital Houston TX
| | - Peter A Doris
- Institute of Molecular Medicine University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
24
|
Occhiuto CJ, Kammala AK, Yang C, Nellutla R, Garcia M, Gomez G, Subramanian H. Store-Operated Calcium Entry via STIM1 Contributes to MRGPRX2 Induced Mast Cell Functions. Front Immunol 2020; 10:3143. [PMID: 32038646 PMCID: PMC6985555 DOI: 10.3389/fimmu.2019.03143] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells are inflammatory immune cells that play an essential role in mediating allergic reactions in humans. It is well-known that mast cell activation is critically regulated by intracellular calcium ion (Ca2+) concentrations. MAS-related G-protein coupled receptor-X2 (MRGPRX2) is a G-protein coupled receptor (GPCR) expressed on mast cells that is activated by various ligands, including several FDA approved drugs; consequently, this receptor has been implicated in causing pseudo-allergic reactions in humans. MRGPRX2 activation leads to an increase in intracellular Ca2+ levels; however, the Ca2+ mobilizing mechanisms utilized by this receptor are largely unknown. Previous reports showed that store-operated Ca2+ entry (SOCE) via the calcium sensor, stromal interaction molecule 1 (STIM1), regulates mast cell response induced by the high-affinity IgE receptor (FcεRI). In this study, using complementary pharmacologic and genetic ablation approaches we demonstrate that SOCE through STIM1 promotes MRGPRX2-induced human mast cell response in vitro. Importantly, SOCE also critically modulates MrgprB2 (mouse ortholog of human MRGPRX2) dependent inflammation in in vivo mouse models of pseudo-allergy. Collectively, our data suggests that MRGPRX2/MrgprB2 activation of mast cells is dependent on SOCE via STIM1, and further characterization of the MRGPRX2-SOCE-STIM1 pathway will lead to the identification of novel targets for the treatment of pseudo-allergic reactions in humans.
Collapse
Affiliation(s)
| | - Ananth K Kammala
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Canchai Yang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Rithvik Nellutla
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Marco Garcia
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Hariharan Subramanian
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Nascimento Da Conceicao V, Sun Y, Zboril EK, De la Chapa JJ, Singh BB. Loss of Ca 2+ entry via Orai-TRPC1 induces ER stress, initiating immune activation in macrophages. J Cell Sci 2019; 133:jcs237610. [PMID: 31722977 PMCID: PMC10682644 DOI: 10.1242/jcs.237610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/17/2022] Open
Abstract
Activation of cellular stresses is associated with inflammation; however, the mechanisms are not well identified. Here, we provide evidence that loss of Ca2+ influx induces endoplasmic reticulum (ER) stress in primary macrophages and in murine macrophage cell line Raw 264.7, in which the unfolded protein response is initiated to modulate cytokine production, thereby activating the immune response. Stressors that initiate the ER stress response block store-dependent Ca2+ entry in macrophages prior to the activation of the unfolded protein response. The endogenous Ca2+ entry channel is dependent on the Orai1-TRPC1-STIM1 complex, and the presence of ER stressors decreased expression of TRPC1, Orai1 and STIM1. Additionally, blocking Ca2+ entry with SKF96365 also induced ER stress, promoted cytokine production, activation of autophagy, increased caspase activation and induced apoptosis. Furthermore, ER stress inducers inhibited cell cycle progression, promoted the inflammatory M1 phenotype, and increased phagocytosis. Mechanistically, restoration of Orai1-STIM1 expression inhibited the ER stress-mediated loss of Ca2+ entry that prevents ER stress and inhibits cytokine production, and thus induced cell survival. These results suggest an unequivocal role of Ca2+ entry in modulating ER stress and in the induction of inflammation.
Collapse
Affiliation(s)
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Emily K Zboril
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Jorge J De la Chapa
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
26
|
Bhuvaneshwari S, Sankaranarayanan K. Structural and Mechanistic Insights of CRAC Channel as a Drug Target in Autoimmune Disorder. Curr Drug Targets 2019; 21:55-75. [PMID: 31556856 DOI: 10.2174/1389450120666190926150258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Calcium (Ca2+) ion is a major intracellular signaling messenger, controlling a diverse array of cellular functions like gene expression, secretion, cell growth, proliferation, and apoptosis. The major mechanism controlling this Ca2+ homeostasis is store-operated Ca2+ release-activated Ca2+ (CRAC) channels. CRAC channels are integral membrane protein majorly constituted via two proteins, the stromal interaction molecule (STIM) and ORAI. Following Ca2+ depletion in the Endoplasmic reticulum (ER) store, STIM1 interacts with ORAI1 and leads to the opening of the CRAC channel gate and consequently allows the influx of Ca2+ ions. A plethora of studies report that aberrant CRAC channel activity due to Loss- or gain-of-function mutations in ORAI1 and STIM1 disturbs this Ca2+ homeostasis and causes several autoimmune disorders. Hence, it clearly indicates that the therapeutic target of CRAC channels provides the space for a new approach to treat autoimmune disorders. OBJECTIVE This review aims to provide the key structural and mechanical insights of STIM1, ORAI1 and other molecular modulators involved in CRAC channel regulation. RESULTS AND CONCLUSION Understanding the structure and function of the protein is the foremost step towards improving the effective target specificity by limiting their potential side effects. Herein, the review mainly focusses on the structural underpinnings of the CRAC channel gating mechanism along with its biophysical properties that would provide the solid foundation to aid the development of novel targeted drugs for an autoimmune disorder. Finally, the immune deficiencies caused due to mutations in CRAC channel and currently used pharmacological blockers with their limitation are briefly summarized.
Collapse
Affiliation(s)
- Sampath Bhuvaneshwari
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| | - Kavitha Sankaranarayanan
- Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai -600 044, India
| |
Collapse
|
27
|
Store-operated calcium entry in thrombosis and thrombo-inflammation. Cell Calcium 2018; 77:39-48. [PMID: 30530092 DOI: 10.1016/j.ceca.2018.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
Cytosolic free calcium (Ca2+) is a second messenger regulating a wide variety of functions in blood cells, including adhesion, activation, proliferation and migration. Store-operated Ca2+ entry (SOCE), triggered by depletion of Ca2+ from the endoplasmic reticulum, provides a main mechanism of regulated Ca2+ influx in blood cells. SOCE is mediated and regulated by isoforms of the ion channel proteins ORAI and TRP, and the transmembrane Ca2+ sensors stromal interaction molecules (STIMs), respectively. This report provides an overview of the (patho)physiological importance of SOCE in blood cells implicated in thrombosis and thrombo-inflammation, i.e. platelets and immune cells. We also discuss the physiological consequences of dysregulated SOCE in platelets and immune cells and the potential of SOCE inhibition as a therapeutic option to prevent or treat arterial thrombosis as well as thrombo-inflammatory disease states such as ischemic stroke.
Collapse
|
28
|
Abstract
Store-operated calcium entry (SOCE) is the most common mode of calcium influx in non-excitable cells, including immune cells. The two STIM isoforms mediate SOCE as well as Fc receptor (FcR)-downstream activation of macrophages and mast cells-which appears to be relevant in vivo, in models of antibody-dependent tissue injury and allergy. Hence, the pathway of SOCE may be a therapeutic target for treatment of immune complex (IC)-mediated autoimmunity and allergic asthma. The pyrazole derivative, BTP2 is an efficient inhibitor of SOCE, which has already been shown to attenuate allergic inflammation. However, its effect on Fc gamma receptor (FcγR) signaling and IC-induced tissue injury had not yet been studied. Here, we show that BTP2 is a potent inhibitor of SOCE in primary macrophages, blocking FcγR-mediated responses. To investigate the effect of inhibition of SOCE in IC-mediated tissue injury, we induced reverse passive Arthus reaction to IgG immune complexes in the skin and lungs of BTP2- or control-treated mice. Treatment with BTP2 resulted in markedly attenuated inflammation in both the skin and the lungs. Our findings indicate the involvement of SOCE in FcγR-mediated responses in vitro and in vivo and suggest that BTP2-mediated inhibition of SOCE may have a therapeutic potential on IC-mediated autoimmunity.
Collapse
|
29
|
Nguyen NT, Han W, Cao W, Wang Y, Wen S, Huang Y, Li M, Du L, Zhou Y. Store‐Operated Calcium Entry Mediated by ORAI and STIM. Compr Physiol 2018; 8:981-1002. [DOI: 10.1002/cphy.c170031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Wang H, Wang C, Wang L, Liu T, Wang Z, You H, Zheng Y, Luo D. Orai1 downregulation impairs lymphocyte function in type 2 diabetes mellitus. Biochem Biophys Res Commun 2018; 500:384-390. [PMID: 29654766 DOI: 10.1016/j.bbrc.2018.04.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND/AIMS It has been suggested that diabetes is associated with immune dysfunction, in which Ca2+ signaling malfunction in lymphocyte may contributes most. However, the pattern of the Ca2+ signal disorder and the mechanism(s) that explains the change are unclear. Here, in this study we aimed to investigate possible changes and mechanism(s) accounting for the internal Ca2+ signals in diabetic T lymphocyte upon stimulation. METHODS AND RESULTS Using Fura-2-AM, we found a significant decrease in Ca2+ influx induced by thapsigargin (TG) and anti-CD3 antibody (OKT3) in T lymphocytes from blood of both diabetes patients and animals. Furthermore, a downregulated Orai1 protein expression, but not mRNA, was also observed in these cells using western blot and qRT-PCR, respectively. In addition, in high-glucose and agonist treated Jurkat T cells, Ca2+ entry and the release of interleukin-2 (IL-2) were also decreased. Orai1 expression reduced, while stromal interaction molecule 1 (STIM1) and other downstream proteins remained unchanged. CONCLUSION This study demonstrates that the declined Orai1 expression, at least partly, contributes to the downregulated Ca2+ entry during lymphocyte excitation, providing an important mechanism for T lymphocyte malfunction in diabetes.
Collapse
Affiliation(s)
- Haoyang Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Cong Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Limin Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Tiantian Liu
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Zhiqiang Wang
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Hongjie You
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Dali Luo
- Department of Pharmacology, Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
31
|
Profiling calcium signals of in vitro polarized human effector CD4 + T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:932-943. [PMID: 29626493 DOI: 10.1016/j.bbamcr.2018.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.
Collapse
|
32
|
Zhang W, Qi Z, Wang Y. BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats. Inflammation 2018; 40:778-787. [PMID: 28168659 DOI: 10.1007/s10753-017-0522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyou Qi
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Arachidonic acid-induced Ca 2+ entry and migration in a neuroendocrine cancer cell line. Cancer Cell Int 2018; 18:30. [PMID: 29507531 PMCID: PMC5834873 DOI: 10.1186/s12935-018-0529-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Store-operated Ca2+ entry (SOCE) has been implicated in the migration of some cancer cell lines. The canonical SOCE is defined as the Ca2+ entry that occurs in response to near-maximal depletion of Ca2+ within the endoplasmic reticulum. Alternatively, arachidonic acid (AA) has been shown to induce Ca2+ entry in a store-independent manner through Orai1/Orai3 hetero-multimeric channels. However, the role of this AA-induced Ca2+ entry pathway in cancer cell migration has not been adequately assessed. Methods The present study investigated the involvement of AA-induced Ca2+ entry in migration in BON cells, a model gastro-enteropancreatic neuroendocrine tumor (GEPNET) cell line using pharmacological and gene knockdown methods in combination with live cell fluorescence imaging and standard migration assays. Results We showed that both the store-dependent and AA-induced Ca2+ entry modes could be selectively activated and that exogenous administration of AA resulted in Ca2+ entry that was pharmacologically distinct from SOCE. Also, whereas homomeric Orai1-containing channels appeared to largely underlie SOCE, the AA-induced Ca2+ entry channel required the expression of Orai3 as well as Orai1. Moreover, we showed that AA treatment enhanced the migration of BON cells and that this migration could be abrogated by selective inhibition of the AA-induced Ca2+ entry. Conclusions Taken together, these data revealed that an alternative Orai3-dependent Ca2+ entry pathway is an important signal for GEPNET cell migration. Electronic supplementary material The online version of this article (10.1186/s12935-018-0529-8) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Nelson HA, Roe MW. Molecular physiology and pathophysiology of stromal interaction molecules. Exp Biol Med (Maywood) 2018; 243:451-472. [PMID: 29363328 DOI: 10.1177/1535370218754524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ca2+ release from the endoplasmic reticulum is an important component of Ca2+ signal transduction that controls numerous physiological processes in eukaryotic cells. Release of Ca2+ from the endoplasmic reticulum is coupled to the activation of store-operated Ca2+ entry into cells. Store-operated Ca2+ entry provides Ca2+ for replenishing depleted endoplasmic reticulum Ca2+ stores and a Ca2+ signal that regulates Ca2+-dependent intracellular biochemical events. Central to connecting discharge of endoplasmic reticulum Ca2+ stores following G protein-coupled receptor activation with the induction of store-operated Ca2+ entry are stromal interaction molecules (STIM1 and STIM2). These highly homologous endoplasmic reticulum transmembrane proteins function as sensors of the Ca2+ concentration within the endoplasmic reticulum lumen and activators of Ca2+ release-activated Ca2+ channels. Emerging evidence indicates that in addition to their role in Ca2+ release-activated Ca2+ channel gating and store-operated Ca2+ entry, STIM1 and STIM2 regulate other cellular signaling events. Recent studies have shown that disruption of STIM expression and function is associated with the pathogenesis of several diseases including autoimmune disorders, cancer, cardiovascular disease, and myopathies. Here, we provide an overview of the latest developments in the molecular physiology and pathophysiology of STIM1 and STIM2. Impact statement Intracellular Ca2+ signaling is a fundamentally important regulator of cell physiology. Recent studies have revealed that Ca2+-binding stromal interaction molecules (Stim1 and Stim2) expressed in the membrane of the endoplasmic reticulum (ER) are essential components of eukaryote Ca2+ signal transduction that control the activity of ion channels and other signaling effectors present in the plasma membrane. This review summarizes the most recent information on the molecular physiology and pathophysiology of stromal interaction molecules. We anticipate that the work presented in our review will provide new insights into molecular interactions that participate in interorganelle signaling crosstalk, cell function, and the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Heather A Nelson
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael W Roe
- 1 Department of Cell and Developmental Biology, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA.,2 Department of Medicine, 12302 SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
35
|
Multi-walled carbon nanotubes act as a chemokine and recruit macrophages by activating the PLC/IP3/CRAC channel signaling pathway. Sci Rep 2017; 7:226. [PMID: 28331181 PMCID: PMC5428205 DOI: 10.1038/s41598-017-00386-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/23/2017] [Indexed: 11/30/2022] Open
Abstract
The impact of nanomaterials on immune cells is gaining attention but is not well documented. Here, we report a novel stimulating effect of carboxylated multi-walled carbon nanotubes (c-MWCNTs) on the migration of macrophages and uncover the underlying mechanisms, especially the upstream signaling, using a series of techniques including transwell migration assay, patch clamp, ELISA and confocal microscopy. c-MWCNTs dramatically stimulated the migration of RAW264.7 macrophages when endocytosed, and this effect was abolished by inhibiting phospholipase C (PLC) with U-73122, antagonizing the IP3 receptor with 2-APB, and blocking calcium release-activated calcium (CRAC) channels with SK&F96365. c-MWCNTs directly activated PLC and increased the IP3 level and [Ca2+]i level in RAW264.7 cells, promoted the translocation of the ER-resident stromal interaction molecule 1 (STIM1) towards the membranous calcium release-activated calcium channel modulator 1 (Orai1), and increased CRAC current densities in both RAW264.7 cells and HEK293 cells stably expressing the CRAC channel subunits Orai1 and STIM1. c-MWCNTs also induced dramatic spatial polarization of KCa3.1 channels in the RAW264.7 cells. We conclude that c-MWCNT is an activator of PLC and strongly recruits macrophages via the PLC/IP3/CRAC channel signaling cascade. These novel findings may provide a fundamental basis for the impact of MWCNTs on the immune system.
Collapse
|
36
|
STIM-TRP Pathways and Microdomain Organization: Ca 2+ Influx Channels: The Orai-STIM1-TRPC Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:139-157. [PMID: 28900913 DOI: 10.1007/978-3-319-57732-6_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ influx by plasma membrane Ca2+ channels is the crucial component of the receptor-evoked Ca2+ signal. The two main Ca2+ influx channels of non-excitable cells are the Orai and TRPC families of Ca2+ channels. These channels are activated in response to cell stimulation and Ca2+ release from the endoplasmic reticulum (ER). The protein that conveys the Ca2+ content of the ER to the plasma membrane is the ER Ca2+ sensor STIM1. STIM1 activates the Orai channels and is obligatory for channel opening. TRPC channels can function in two modes, as STIM1-dependent and STIM1-independent. When activated by STIM1, both channel types function at the ER/PM (plasma membrane) junctions. This chapter describes the properties and regulation of the channels by STIM1, with emphasis how and when TRPC channels function as STIM1-dependent and STIM1-independent modes and their unique Ca2+-dependent physiological functions that are not shared with the Orai channels.
Collapse
|
37
|
Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca 2+ entry. Cell Calcium 2016; 63:53-59. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a conserved mechanism of Ca2+ influx that regulates Ca2+ signaling in many cell types. SOCE is activated by depletion of endoplasmic reticulum (ER) Ca2+ stores in response to physiological agonist stimulation. After it was first postulated by J.W. Putney Jr. in 1986, SOCE has been described in a large number of non-excitable cell types including secretory cells of different exocrine glands. Here we discuss the mechanisms by which SOCE controls salt and fluid secretion in exocrine glands, with a special focus on eccrine sweat glands. In sweat glands, SOCE plays an important, non-redundant role in regulating the function of Ca2+-activated Cl- channels (CaCC), Cl- secretion and sweat production. In the absence of key regulators of SOCE such as the CRAC channel pore subunit ORAI1 and its activator STIM1, the Ca2+-activated chloride channel TMEM16A is inactive and fails to secrete Cl-, resulting in anhidrosis in mice and human patients.
Collapse
Affiliation(s)
- Axel R Concepcion
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
38
|
Han AY, Lee HS, Seol GH. Foeniculum vulgare Mill. increases cytosolic Ca 2+ concentration and inhibits store-operated Ca 2+ entry in vascular endothelial cells. Biomed Pharmacother 2016; 84:800-805. [PMID: 27721178 DOI: 10.1016/j.biopha.2016.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/20/2016] [Accepted: 10/03/2016] [Indexed: 02/01/2023] Open
Abstract
This study assessed the effects of essential oil of Foeniculum vulgare Mill. (fennel oil) and of trans-anethole, the main component of fennel oil, on extracellular Ca2+-induced store-operated Ca2+ entry (SOCE) into vascular endothelial (EA) cells and their mechanisms of action. Components of fennel oil were analyzed by gas chromatography-mass spectrometry. Cytosolic Ca2+ concentration ([Ca2+]c) in EA cells was determined using Fura-2 fluorescence. In the presence of extracellular Ca2+, fennel oil significantly increased [Ca2+]c in EA cells; this increase was significantly inhibited by the Ca2+ channel blockers La3+ and nifedipine. In contrast, fennel oil induced [Ca2+]c was significantly lower in Ca2+-free solution, suggesting that fennel oil increases [Ca2+]c mainly by enhancing Ca2+ influx into EA cells. [Ca2+]c mobilization by trans-anethole was similar to that of fennel oil. Moreover, SOCE was suppressed by fennel oil and trans-anethole. SOCE was also attenuated by lanthanum (La3+), a non-selective cation channel (NSC) blocker; 2-aminoethoxydiphenyl borane (2-APB), an inositol 1,4,5-triphosphate (IP3) receptor inhibitor and SOCE blocker; and U73122, an inhibitor of phospholipase C (PLC). Further, SOCE was more strongly inhibited by La3+ plus fennel oil or trans-anethole than by La3+ alone. These findings suggest that fennel oil and trans-anethole significantly inhibit SOCE-induced [Ca2+]c increase in vascular endothelial cells and that these reactions may be mediated by NSC, IP3-dependent Ca2+ mobilization, and PLC activation.
Collapse
Affiliation(s)
- A Young Han
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Hui Su Lee
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea
| | - Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
39
|
Wong HSC, Chang WC. Correlation of clinical features and genetic profiles of stromal interaction molecule 1 (STIM1) in colorectal cancers. Oncotarget 2016; 6:42169-82. [PMID: 26543234 PMCID: PMC4747217 DOI: 10.18632/oncotarget.5888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/22/2015] [Indexed: 01/06/2023] Open
Abstract
STIM1 overexpression has been observed in a portion of colorectal cancer (CRC) patients and associated with cancer cell invasion and migration. To characterize the distinctive expression profiles associated with stromal interaction molecule 1 (STIM1) overexpression/low-expression between CRC subtypes, and further assess the divergence transcription regulation impact of STIM1 between colon (COADs) and rectum (READs) adenocarcinomas in order to depict the role of SOCE pathway in CRCs, we have conducted a comprehensive phenome-transcriptome-interactome analysis to clarify underlying molecular differences of COADs/READs contributed by STIM1. Results demonstrated that a number of novel STIM1-associated signatures have been identified in COADs but not READs. Specifically, the presence of STIM1 overexpression in COADs, which represented a disturbance of the SOCE pathway, was associated with cell migration and cell motility properties. We identified 11 prognostic mRNA/miRNA predictors associated with the overall survival of COAD patients, suggesting the correlation of STIM1-associated features to clinicopathological outcomes. These findings enhance our understanding on differences between CRC subtypes in panoramic view, and suggested STIM1 as a promising therapeutic biomarker in COADs.
Collapse
Affiliation(s)
- Henry Sung-Ching Wong
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chiao Chang
- Master Program for Clinical Pharmacogenomics and Pharmacoproteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University Wan Fang Hospital, Taipei, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacy, Taipei Medical University Wan Fang Hospital, Taipei, Taiwan
| |
Collapse
|
40
|
Herman HS, Mehta S, Cárdenas WB, Stewart-Ibarra AM, Finkelstein JL. Micronutrients and Leptospirosis: A Review of the Current Evidence. PLoS Negl Trop Dis 2016; 10:e0004652. [PMID: 27387046 PMCID: PMC4936698 DOI: 10.1371/journal.pntd.0004652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leptospirosis is one of the most widespread zoonoses and represents a major threat to human health. Due to the high burden of disease, limitations in diagnostics, and limited coverage and availability of effective human and veterinary vaccines, leptospirosis remains an important neglected zoonotic disease. Improved surveillance and identification of modifiable risk factors for leptospirosis are urgently needed to inform preventive interventions and reduce the risk and severity of Leptospira infection. METHODOLOGY/PRINCIPAL FINDINGS This review was conducted to examine the evidence that links micronutrient status and Leptospira infection. A total of 56 studies were included in this review: 28 in vitro, 17 animal, and 11 observational human studies. Findings indicated that Leptospira infection is associated with higher iron and calcium concentrations and hypomagnesemia. CONCLUSIONS/SIGNIFICANCE Few prospective studies and no randomized trials have been conducted to date to examine the potential role of micronutrients in Leptospira infection. The limited literature in this area constrains our ability to make specific recommendations; however, the roles of iron, calcium, and magnesium in leptospirosis represent important areas for future research. The role of micronutrients in leptospirosis risk and severity needs to be elucidated in larger prospective human studies to inform public health interventions.
Collapse
Affiliation(s)
- Heather S. Herman
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- St. John's Research Institute, Bangalore, India
| | - Washington B. Cárdenas
- Laboratorio de Biomedicina, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Anna M. Stewart-Ibarra
- Department of Medicine and the Center for Global Health and Translational Science, State University of New York (SUNY) Upstate Medical University, Syracuse, New York, United States of America
| | - Julia L. Finkelstein
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
- St. John's Research Institute, Bangalore, India
- * E-mail:
| |
Collapse
|
41
|
Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol 2016; 594:2837-47. [PMID: 26939537 DOI: 10.1113/jp271142] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/13/2016] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites.
Collapse
Affiliation(s)
- Emmanuel Okeke
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Hayley Dingsdale
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Tony Parker
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|
42
|
Sampath B, Sankaranarayanan K. Glu106 targeted inhibitors of ORAI1 as potential Ca 2+ release-activated Ca 2+ (CRAC) channel blockers - molecular modeling and docking studies. J Recept Signal Transduct Res 2016; 36:572-585. [PMID: 26895524 DOI: 10.3109/10799893.2016.1141956] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Calcium release-activated calcium modulator 1(ORAI1) is an integral component of the calcium release-activated calcium channel (CRAC) channel complex and plays a central role in regulating Ca2 + concentrations in T-lymphocytes. It is critical for many physiological processes, including cell-proliferation, cytokine production and activation of the immune system. Loss of ORAI1 function is linked with rheumatoid arthritis (RA) and hence pharmacological blockers of ORAI1 could be potential therapeutic agents for the treatment of RA. In this study, we have used a high-throughput screening approach to inhibit the binding of Ca2+ toward ORAI1 and the interactions are verified through induced fit docking. The results hint that these compounds act by possibly binding with, and thereby blocking Ca2+-binding with ORAI1 (E106). The molecular dynamics (MD) simulations shows strong support toward the hit compounds by showing the ligand potency throughout the simulation timescale of 30 ns. We have thus identified a novel class of highly stable, potential lead compounds that directly bind with the selectivity filter region E106 and block Ca2+ binding on ORAI1. This resulting alteration in the pore geometry of ORAI1 due to the strong blocking mechanism of lead compounds will greatly diminish its function and the downstream activities that result from the same including decreased production of cytokines in autoimmune disorders. This study may lay the foundation for finding novel lead compounds for clinical trials that could positively modulate the course of autoimmune disorders with ORAI1 as its specific target.
Collapse
Affiliation(s)
- Bhuvaneshwari Sampath
- a Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University , Chennai , Tamil Nadu , India
| | - Kavitha Sankaranarayanan
- a Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology, Anna University , Chennai , Tamil Nadu , India
| |
Collapse
|
43
|
Carrillo C, Giraldo M, Cavia MM, Alonso-Torre SR. Effect of oleic acid on store-operated calcium entry in immune-competent cells. Eur J Nutr 2016; 56:1077-1084. [PMID: 26830415 DOI: 10.1007/s00394-016-1157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/13/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE To study the mechanism by which oleic acid (OA) (C18:1) exerts its beneficial effects on immune-competent cells. Since store-operated Ca2+ entry (SOCE) is a Ca2+ influx pathway involved in the control of multiple physiological processes including cell proliferation, we studied the effect of OA in Ca2+ signals of Jurkat T cells and THP-1 monocytes, paying particular attention to SOCE. METHODS Changes in [Ca2+]i were measured using the Fura-2 fluorescence dye. Mn2+ uptake was monitored as a rate of quenching of Fura-2 fluorescence measured at the Ca2+-insensitive wavelengths. Thapsigargin was used to induce SOCE in Fura-2-loaded cells. RESULTS We showed a clear dose-dependent SOCE-inhibitory effect of OA in both cell lines. Such an inhibitory effect was PKC independent and totally restored by albumin, suggesting that OA exerts its effect somewhere in the membrane. We also demonstrated that OA induces increases in [Ca2+]i partly mediated by an extracellular Ca2+ influx through econazole-insensitive channels. Finally, we compared the effect of OA with stearic acid (C18:0), assuming the emerged evidence concerning the link between saturated fats and inflammation disorders. Stearic acid failed to inhibit SOCE, independently on the concentration tested, thus intensifying the physiological relevance of our findings. CONCLUSION We suggest a physiological pathway for the beneficial effects of OA in inflammation.
Collapse
Affiliation(s)
- Celia Carrillo
- Nutrition and Food Science, Faculty of Sciences, University of Burgos, Pl. Misael Bañuelos s/n, 09001, Burgos, Spain.
| | - María Giraldo
- Nutrition and Food Science, Faculty of Sciences, University of Burgos, Pl. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - M Mar Cavia
- Nutrition and Food Science, Faculty of Sciences, University of Burgos, Pl. Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sara R Alonso-Torre
- Nutrition and Food Science, Faculty of Sciences, University of Burgos, Pl. Misael Bañuelos s/n, 09001, Burgos, Spain
| |
Collapse
|
44
|
Xie J, Pan H, Yao J, Zhou Y, Han W. SOCE and cancer: Recent progress and new perspectives. Int J Cancer 2015; 138:2067-77. [PMID: 26355642 PMCID: PMC4764496 DOI: 10.1002/ijc.29840] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 09/03/2015] [Indexed: 12/15/2022]
Abstract
Ca2+ acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store‐operated Ca2+ entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca2+ stores triggers activation of the endoplasmic reticulum (ER)‐resident Ca2+ sensor protein STIM to gate and open the ORAI Ca2+ channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX
| | - Weidong Han
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 2015; 460:5-21. [PMID: 25998729 DOI: 10.1016/j.bbrc.2015.01.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
The calcium (Ca(2+)) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca(2+) signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca(2+) levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca(2+) sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca(2+) sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca(2+) sensing domain. The molecular mechanisms underlying the Ca(2+)-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca(2+) levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca(2+) sensor proteins execute their biological functions.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Tadateru Nishikawa
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
46
|
Discovery of 7-azaindole derivatives as potent Orai inhibitors showing efficacy in a preclinical model of asthma. Bioorg Med Chem Lett 2015; 25:1217-22. [PMID: 25690784 DOI: 10.1016/j.bmcl.2015.01.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/23/2022]
Abstract
Synthesis and SAR of a series of 7-azaindoles as Orai channel inhibitors showing good potency inhibiting IL-2 production in Jurkat cells is described. Compound 14d displaying best pharmacokinetic properties was further characterized in a model of allergen induced asthma showing inhibition in the number of eosinophils in BALF. High lipophilicity remains as one of the main challenges for this class of compounds.
Collapse
|
47
|
Zui PAN, JianJie MA. Open Sesame: treasure in store-operated calcium entry pathway for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2014; 58:48-53. [PMID: 25481035 PMCID: PMC4765918 DOI: 10.1007/s11427-014-4774-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 11/26/2022]
Abstract
Store-operated Ca2+ entry (SOCE) controls intracellular Ca2+ homeostasis and regulates a wide range of cellular events including proliferation, migration and invasion. The discovery of STIM proteins as Ca2+ sensors and Orai proteins as Ca2+ channel pore forming units provided molecular tools to understand the physiological function of SOCE. Many studies have revealed the pathophysiological roles of Orai and STIM in tumor cells. This review focuses on recent advances in SOCE and its contribution to tumorigenesis. Altered Orai and/or STIM functions may serve as biomarkers for cancer prognosis, and targeting the SOCE pathway may provide a novel means for cancer treatment.
Collapse
Affiliation(s)
- PAN Zui
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding author (; )
| | - MA JianJie
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding author (; )
| |
Collapse
|
48
|
Kim JB, Kim SJ, Kang SY, Yi JW, Kim SM. The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis. KOREAN JOURNAL OF PEDIATRICS 2014; 57:445-50. [PMID: 25379045 PMCID: PMC4219947 DOI: 10.3345/kjp.2014.57.10.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/27/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022]
Abstract
Purpose Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium (KCa) channel genes in HOKPP patients. Methods We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the KCa channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes KCa1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.
Collapse
Affiliation(s)
- June-Bum Kim
- Department of Pediatrics, Hallym University Hangang Sacred Heart Hospital, Seoul, Korea
| | - Sung-Jo Kim
- Department of Biotechnology, Hoseo University, Asan, Korea
| | - Sun-Yang Kang
- Department of Biotechnology, Hoseo University, Asan, Korea
| | - Jin Woong Yi
- Department of Orthopedic Surgery, Konyang University Hospital, Daejeon, Korea
| | - Seung-Min Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
49
|
Stromal interaction molecules as important therapeutic targets in diseases with dysregulated calcium flux. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2307-14. [DOI: 10.1016/j.bbamcr.2014.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/15/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
|
50
|
Sadaghiani A, Lee S, Odegaard J, Leveson-Gower D, McPherson O, Novick P, Kim M, Koehler A, Negrin R, Dolmetsch R, Park C. Identification of Orai1 Channel Inhibitors by Using Minimal Functional Domains to Screen Small Molecule Microarrays. ACTA ACUST UNITED AC 2014; 21:1278-1292. [DOI: 10.1016/j.chembiol.2014.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 02/07/2023]
|