1
|
Xie Q, Hu Y, Zhang C, Zhang C, Qin J, Zhao Y, An Q, Zheng J, Shi C. Curcumin blunts epithelial-mesenchymal transition to alleviate invasion and metastasis of prostate cancer through the JARID1D demethylation. Cancer Cell Int 2024; 24:303. [PMID: 39218854 PMCID: PMC11366129 DOI: 10.1186/s12935-024-03483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common and prevalent cancers in men worldwide. The majority of PCa-related deaths result from metastasis rather than primary tumors. Several studies have focused on the relationship between male-specific genes encoded on the Y chromosome and PCa metastasis; however, the relationship between the male specific protein encoded on the Y chromosome and tumor suppression has not been fully clarified. Here, we report a male specific protein of this type, the histone H3 lysine 4 (H3K4) demethylase JARID1D, which has the ability to inhibit the gene expression program related to cell invasion, and can thus form a phenotype that inhibits the invasion of PCa cells. However, JARID1D exhibits low expression level in advanced PCa, and which is related to rapid invasion and metastasis in patients with PCa. Curcumin, as a multi-target drug, can enhance the expression and demethylation activity of JARID1D, affect the androgen receptor (AR) and epithelial-mesenchymal transition (EMT) signaling cascade, and inhibit the metastatic potential of castration resistant cancer (CRPC). These findings suggest that using curcumin to increase the expression and demethylation activity of JARID1D may be a feasible strategy to inhibit PCa metastasis by regulating EMT and AR.
Collapse
Affiliation(s)
- Qinghua Xie
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Animal Experiment Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yaohua Hu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chenyang Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
- Gansu University of Chinese Medicine, Lanzhou, 730030, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Qin
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qingling An
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jie Zheng
- National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Kumar AA. Prostate cancer genotyping for risk stratification and precision treatment. Curr Urol 2024; 18:87-97. [PMID: 39176294 PMCID: PMC11337998 DOI: 10.1097/cu9.0000000000000222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/30/2023] [Indexed: 08/24/2024] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed cancer and second leading cause of cancer-related deaths in men. It is heterogeneous, as is evident from the wide spectrum of therapeutic approaches. Most patients with PC are initially responsive to androgen deprivation therapy; however, the majority of cases are either hormone-sensitive PC or castration-resistant PC. Current therapeutic protocols follow the evolution of PC, a continuously progressive process involving a combination of widespread genomic alterations. These genomic alterations are either hereditary germline mutations, such as mutations in BRCA2, or specific only to tumor cells (somatic). Tumor-specific genomic spectra include genomic structural rearrangements, canonical androgen response genes, and many other specific genes such as TMPRSS2-ERG fusion, SPOP/FOXA1, TP53/RB1/PTEN, and BRCA2. New evidence indicates the involvement of signaling pathways including PI3K, WNT/β-catenin, SRC, and IL-6/STAT, which have been shown to promote epithelial-mesenchymal transition cancer stem cell-like features/stemness, and neuroendocrine differentiation in PC. Over the last decade, our understanding of the genotype-phenotype relationships has been enhanced considerably. The genetic background of PC related to canonical genetic alterations and signaling pathway activation genes has shed more insight into the molecular subtype and disease landscape, resulting in a more flexible role of individual therapies targeting diverse genotypes and phenotypes.
Collapse
Affiliation(s)
- Ashish A. Kumar
- Department of Urology, York & Scarborough Teaching Hospitals NHS Foundation Trust, York, UK
| |
Collapse
|
3
|
Ariffen NA, Ornellas AA, Alves G, Shana'ah AM, Sharma S, Kankel S, Jamali E, Theis B, Liehr T. Amplification of different satellite-DNAs in prostate cancer. Pathol Res Pract 2024; 256:155269. [PMID: 38522124 DOI: 10.1016/j.prp.2024.155269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
In various solid tumors and corresponding cell lines, prior research has identified acquired copy number variations (CNVs) encompassing centromeric satellite-DNA sequences. This observation emerged from the application of centromeric probes (satellite-DNA) as controls in molecular cytogenetic investigations and diagnostics, although these accounts were largely anecdotal. In this study, we conducted a systematic screening for satellite-DNA sequence amplification in 31 prostate cancer (PCa) samples, a prevalent malignancy in men characterized by discernible molecular cytogenetic aberrations. Notably, PCa-typical genetic aberrations, such as TMPRSS2-ERG gene rearrangements and PTEN deletion, were identified in 12 and 6 out of the 31 PCa samples, respectively. Overall, PCa exhibited genomic instability marked by chromosomal gain or loss of signals across nearly all tested satellite-DNA regions, with particular emphasis on the Y-chromosome (18/31 cases). Remarkably, 5/12 PCa samples representing more advanced metastatic cancer displayed amplification of one or two satellite DNA stretches each, being detectable as blocks analogous to homogenously staining regions. Notably, these stretches included α-satellite DNA derived from chromosomes 2, 3, 4, 15, and 20, as well as satellite-III DNAs (D1Z1 and DYZ1). These findings align with recent discoveries indicating that α-satellite DNAs are expressed as long-non-coding RNAs in advanced cancer, particularly in the context of PCa.
Collapse
Affiliation(s)
- Nurul Aida Ariffen
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany; Laboratory, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | | | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Ahmad Moay Shana'ah
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Samiha Sharma
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Stefanie Kankel
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Elena Jamali
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Bernhard Theis
- Jena University Hospital, Friedrich Schiller University, Institute of Forensic Medicine, Section Pathology, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany.
| |
Collapse
|
4
|
Mankan AK, Mankan N, de Las Heras B, Ramkissoon SH, Bodriagova O, Vidal L, Grande E, Saini KS. Bladder Cancer, Loss of Y Chromosome, and New Opportunities for Immunotherapy. Adv Ther 2024; 41:885-890. [PMID: 38198042 DOI: 10.1007/s12325-023-02758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.
Collapse
Affiliation(s)
- Arun K Mankan
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
| | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Laura Vidal
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA
| | | | - Kamal S Saini
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
5
|
Lee JE, Park SU, So MH, Lee HY. Age prediction using DNA methylation of Y-chromosomal CpGs in semen samples. Forensic Sci Int Genet 2024; 69:103007. [PMID: 38217952 DOI: 10.1016/j.fsigen.2024.103007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
In cases of sexual assault, the evidence often exists as a mixture of female and male body fluids, and in many cases, contains a higher proportion of female body fluids than males. In these cases, Y-STR, rather than autosomal STRs, can provide useful information. It becomes very difficult to identify the true suspect if there is no match among known suspects or if a match exists for two or more suspects, e.g. two suspects from the same paternal lineage. However, age prediction using the DNA methylation of Y-chromosomal CpGs can help narrow the search for unknown suspects and discriminate between older and younger suspects. Therefore, the DNA methylation profiles of semen samples from 56 healthy Korean males were generated using Illumina's Infinium MethylationEPIC BeadChip Array. Among the ten identified age-associated CpG markers located in the Y-chromosome, nine were used to construct age prediction models. The identified markers were further investigated in the MPS analysis of 147 semen samples, and the multiplex assay was validated with the reliability, reproducibility and sensitivity tests. Several age prediction models were constructed using the MPS data with the multiple linear regression, stepwise linear regression, ridge linear regression, lasso regression, elastic net linear regression and support vector machine analyses, and all showed MAEs of 5 to 7 years in the test set samples. Six single-source female samples were also subjected to MPS analysis but showed very low coverage that could not affect the analysis of the mixed samples. Therefore, the age prediction models of the present study are expected to provide useful investigative leads, especially in mixed male and female samples from sexual assault cases.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Sang Un Park
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Moon Hyun So
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea
| | - Hwan Young Lee
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, the Republic of Korea; Institute of Forensic and Anthropological Science, Seoul National University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
6
|
Xu Y, Pang Q. Repetitive DNA Sequences in the Human Y Chromosome and Male Infertility. Front Cell Dev Biol 2022; 10:831338. [PMID: 35912115 PMCID: PMC9326358 DOI: 10.3389/fcell.2022.831338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The male-specific Y chromosome, which is well known for its diverse and complex repetitive sequences, has different sizes, genome structures, contents and evolutionary trajectories from other chromosomes and is of great significance for testis development and function. The large number of repetitive sequences and palindrome structure of the Y chromosome play an important role in maintaining the stability of male sex determining genes, although they can also cause non-allelic homologous recombination within the chromosome. Deletion of certain Y chromosome sequences will lead to spermatogenesis disorders and male infertility. And Y chromosome genes are also involved in the occurrence of reproductive system cancers and can increase the susceptibility of other tumors. In addition, the Y chromosome has very special value in the personal identification and parentage testing of male-related cases in forensic medicine because of its unique paternal genetic characteristics. In view of the extremely high frequency and complexity of gene rearrangements and the limitations of sequencing technology, the analysis of Y chromosome sequences and the study of Y-gene function still have many unsolved problems. This article will introduce the structure and repetitive sequence of the Y chromosome, summarize the correlation between Y chromosome various sequence deletions and male infertility for understanding the repetitive sequence of Y chromosome more systematically, in order to provide research motivation for further explore of the molecules mechanism of Y-deletion and male infertility and theoretical foundations for the transformation of basic research into applications in clinical medicine and forensic medicine.
Collapse
Affiliation(s)
- Yong Xu
- Department of Emergency Surgery, Jining NO 1 People’s Hospital, Jining, China
| | - Qianqian Pang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Qianqian Pang,
| |
Collapse
|
7
|
Dicitore A, Bacalini MG, Saronni D, Gaudenzi G, Cantone MC, Gelmini G, Grassi ES, Gentilini D, Borghi MO, Di Blasio AM, Persani L, Garagnani P, Franceschi C, Vitale G. Role of Epigenetic Therapy in the Modulation of Tumor Growth and Migration in Human Castration-Resistant Prostate Cancer Cells with Neuroendocrine Differentiation. Neuroendocrinology 2022; 112:580-594. [PMID: 34348348 DOI: 10.1159/000518801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2'-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). METHODS The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. RESULTS Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/β-catenin. CONCLUSIONS A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.
Collapse
Affiliation(s)
- Alessandra Dicitore
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
| | | | - Davide Saronni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Germano Gaudenzi
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
| | - Maria Celeste Cantone
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano IRCCS, Bioinformatics and Statistical Genomics Unit, Milan, Italy
| | - Maria Orietta Borghi
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory of Immuno-rheumatology, Milan, Italy
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | | | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Department of Applied Mathematics, Institute of Information Technology, Mathematics and Mechanics, Lobachevsky State University of Nizhny Novgorod-National Research University, Nizhny Novgorod, Russian Federation
| | - Giovanni Vitale
- Istituto Auxologico Italiano, IRCCS, Laboratory of Geriatric and Oncologic Neuroendocrinology Research, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy
| |
Collapse
|
8
|
Zheng XY, Cao MZ, Ba Y, Li YF, Ye JL. LncRNA testis-specific transcript, Y-linked 15 (TTTY15) promotes proliferation, migration and invasion of colorectal cancer cells via regulating miR-29a-3p/DVL3 axis. Cancer Biomark 2021; 31:1-11. [PMID: 33016900 DOI: 10.3233/cbm-201709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long non-coding RNA testis-specific transcript, Y-linked 15 (TTTY15) is oncogenic in prostate cancer, however its expression and function in colorectal cancer remain largely unknown. METHODS Paired colorectal cancer samples/normal tissues were collected, and the expression levels of TTTY15, miR-29a-3p and disheveled segment polarity protein 3 (DVL3) were examined by quantitative real-time polymerase chain reaction (qRT-PCR); TTTY15 shRNA and overexpression plasmids were transfected into HT29 and HCT-116 cell lines using lipofectamine reagent, respectively; the proliferation and colony formation were detected by CCK-8 assay and plate colony formation assay; qRT-PCR and Western blot were used to analyze the changes of miR-29a-3p and DVL3; dual-luciferase reporter gene assay was used to determine the regulatory relationships between miR-29a-3p and TTTY15, miR-29a-3p and DVL3. RESULTS TTTY15 was significantly up-regulated in cancerous tissues of colorectal cancer samples, positively correlated with the expression of DVL3, while negatively correlated with the expression of miR-29a-3p. After TTTY15 shRNAs were transfected into colorectal cancer cells, the proliferation and metastasis of cancer cells were significantly inhibited, while TTTY15 overexpression had opposite biological effects. TTTY15 shRNA could reduce the expression of DVL3 on both mRNA and protein levels, and the luciferase activity of TTTY15 sequence was also inhibited by miR-29a-3p. DVL3 was also validated as a target gene of miR-29a-3p, and it could be repressed by miR-29a-3p mimics or TTTY15 shRNA. CONCLUSION TTTY15 is abnormally upregulated in colorectal cancer tissues, and it can modulate the proliferation and metastasis of colorectal cancer cells. It functions as the ceRNA to regulate the expression of DVL3 by sponging miR-29a-3p.
Collapse
Affiliation(s)
- Xiao-Ying Zheng
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| | - Ming-Zheng Cao
- Department of General Surgery, Linyi Central Hospital, Linyi, Shandong, China
| | - Ying Ba
- Department of Nursing, Linyi Central Hospital, Linyi, Shandong, China
| | - Yue-Feng Li
- Department of Oncology, Linyi Central Hospital, Linyi, Shandong, China
| | - Jun-Ling Ye
- Department of Pathology, Qinghai University Affiliated Hospital, Xining, Qinghai, China
| |
Collapse
|
9
|
Geczik AM, Kelly SP, Pfeiffer RM, Huang WY, Liao LM, Zhou CK, Brinton LA, Cook MB. Fatherhood status in relation to prostate cancer risks in two large U.S.-based prospective cohort studies. Cancer Med 2020; 10:405-415. [PMID: 33219755 PMCID: PMC7826462 DOI: 10.1002/cam4.3606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
Background Despite the high incidence and mortality of prostate cancer (PCa) in the Unites States, few risk factors have been consistently linked with these PCa outcomes. Assessing proxies of reproductive factors may offer insights into PCa pathogenesis. In this study, we examined fatherhood status as a proxy of fertility in relation to total, nonaggressive, aggressive, and fatal PCa. Methods We examined participants of two cohorts, the NIH‐AARP Diet and Health (NIH‐AARP) Study and Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. We used Cox proportional hazards regression to estimate hazard ratios (HRs) and 95% confidence intervals of associations between fatherhood status and number of children sired in relation to PCa incidence. Results Fatherhood status (one or more children vs. childless) was positively associated with total PCa risk in NIH‐AARP or PLCO, but was not statistically significant (p = 0.06 and 0.55, respectively). Number of children sired indicated a slightly elevated risk of total PCa, but HRs were rarely significant and were of a fairly constant magnitude with no discernable trend relative to the childless referent group. Associations were similar for nonaggressive and aggressive PCa. The trend test for fatal PCa was statistically significant in NIH‐AARP (ptrend < 0.01), despite none of the individual categorical point estimates reaching this threshold. Conclusion This study provides tentative evidence that fathering children is associated with a slightly increased PCa risk. Future research should strive to assess better proxies of reproductive function in relation to aggressive and fatal PCa to provide more specific evidence for this putative relationship.
Collapse
Affiliation(s)
- Ashley M Geczik
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Scott P Kelly
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Linda M Liao
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Cindy K Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Louise A Brinton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Michael B Cook
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| |
Collapse
|
10
|
The Y Chromosome: A Complex Locus for Genetic Analyses of Complex Human Traits. Genes (Basel) 2020; 11:genes11111273. [PMID: 33137877 PMCID: PMC7693691 DOI: 10.3390/genes11111273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
The Human Y chromosome (ChrY) has been demonstrated to be a powerful tool for phylogenetics, population genetics, genetic genealogy and forensics. However, the importance of ChrY genetic variation in relation to human complex traits is less clear. In this review, we summarise existing evidence about the inherent complexities of ChrY variation and their use in association studies of human complex traits. We present and discuss the specific particularities of ChrY genetic variation, including Y chromosomal haplogroups, that need to be considered in the design and interpretation of genetic epidemiological studies involving ChrY.
Collapse
|
11
|
Brownmiller T, Juric JA, Ivey AD, Harvey BM, Westemeier ES, Winters MT, Stevens AM, Stanley AN, Hayes KE, Sprowls SA, Ammer ASG, Walker M, Bey EA, Wu X, Lim ZF, Zhu L, Wen S, Hu G, Ma PC, Martinez I. Y Chromosome LncRNA Are Involved in Radiation Response of Male Non-Small Cell Lung Cancer Cells. Cancer Res 2020; 80:4046-4057. [PMID: 32616503 DOI: 10.1158/0008-5472.can-19-4032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/01/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Numerous studies have implicated changes in the Y chromosome in male cancers, yet few have investigated the biological importance of Y chromosome noncoding RNA. Here we identify a group of Y chromosome-expressed long noncoding RNA (lncRNA) that are involved in male non-small cell lung cancer (NSCLC) radiation sensitivity. Radiosensitive male NSCLC cell lines demonstrated a dose-dependent induction of linc-SPRY3-2/3/4 following irradiation, which was not observed in radioresistant male NSCLC cell lines. Cytogenetics revealed the loss of chromosome Y (LOY) in the radioresistant male NSCLC cell lines. Gain- and loss-of-function experiments indicated that linc-SPRY3-2/3/4 transcripts affect cell viability and apoptosis. Computational prediction of RNA binding proteins (RBP) motifs and UV-cross-linking and immunoprecipitation (CLIP) assays identified IGF2BP3, an RBP involved in mRNA stability, as a binding partner for linc-SPRY3-2/3/4 RNA. The presence of linc-SPRY3-2/3/4 reduced the half-life of known IGF2BP3 binding mRNA, such as the antiapoptotic HMGA2 mRNA, as well as the oncogenic c-MYC mRNA. Assessment of Y chromosome in NSCLC tissue microarrays and expression of linc-SPRY3-2/3/4 in NSCLC RNA-seq and microarray data revealed a negative correlation between the loss of the Y chromosome or linc-SPRY3-2/3/4 and overall survival. Thus, linc-SPRY3-2/3/4 expression and LOY could represent an important marker of radiotherapy in NSCLC. SIGNIFICANCE: This study describes previously unknown Y chromosome-expressed lncRNA regulators of radiation response in male NSCLC and show a correlation between loss of chromosome Y and radioresistance. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/19/4046/F1.large.jpg.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Jamie A Juric
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Abby D Ivey
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Brandon M Harvey
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Emily S Westemeier
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Michael T Winters
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Alyson M Stevens
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Alana N Stanley
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Karen E Hayes
- Modulation Therapeutics, West Virginia University, Morgantown, West Virginia
| | - Samuel A Sprowls
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia
| | - Amanda S Gatesman Ammer
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Mackenzee Walker
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia
| | - Erik A Bey
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana
| | - Xiaoliang Wu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Zuan-Fu Lim
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania.,Cancer Cell Biology Program, West Virginia University School of Graduate Studies, West Virginia University, Morgantown, West Virginia
| | - Lin Zhu
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, West Virginia
| | - Gangqing Hu
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia.,Bioinformatics Core, West Virginia University, Morgantown, West Virginia
| | - Patrick C Ma
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania
| | - Ivan Martinez
- Department of Microbiology, Immunology & Cell Biology, West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
12
|
Wu P, Xu R, Chen X, Zhao Y, Tan D, Zhao Y, Qin W, Zhang C, Ge X, Shi C. Establishment and characterization of patient-derived xenografts for hormone-naïve and castrate-resistant prostate cancers to improve treatment modality evaluation. Aging (Albany NY) 2020; 12:3848-3861. [PMID: 32092044 PMCID: PMC7066917 DOI: 10.18632/aging.102854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/28/2020] [Indexed: 04/12/2023]
Abstract
Prostate cancer (PC) is a heterogeneous disease characterized by variable morphological patterns. Thus, establishing a patient-derived xenograft (PDX) model that retains the key features of the primary tumor for each type of PC is important for appropriate evaluation. In this study, we established PDX models of hormone-naïve (D17225) and castration-resistant (B45354) PC by implanting fresh tumor samples, obtained from patients with advanced PC under the renal capsule of immune-compromised mice. Supplementation with exogenous androgens shortened the latent period of tumorigenesis and increased the tumor formation rate. The PDX models exhibited the same major genomic and phenotypic features of the disease in humans and maintained the main pathological features of the primary tumors. Moreover, both PDX models showed different outcomes after castration or docetaxel treatment. The hormone-naïve D17225 PDX model displayed a range of responses from complete tumor regression to overt tumor progression, and the development of castrate-resistant PC was induced after castration. The responses of the two PDX models to androgen deprivation and docetaxel were similar to those observed in patients with advanced PC. These new preclinical PC models will facilitate research on the mechanisms underlying treatment response and resistance.
Collapse
Affiliation(s)
- Pengpeng Wu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Rong Xu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xue Chen
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Ya Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Biomedicine Application Laboratory, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Xu Ge
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
13
|
Isali I, Al-Sadawi MAA, Qureshi A, Khalifa AO, Agrawal MK, Shukla S. Growth factors involve in cellular proliferation, differentiation and migration during prostate cancer metastasis. INTERNATIONAL JOURNAL OF CELL BIOLOGY AND PHYSIOLOGY 2019; 2:1-13. [PMID: 32259163 PMCID: PMC7133721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Growth factors play active role in cells proliferation, embryonic development regulation and cellular differentiation. Altered level growth factors promote malignant transformation of normal cells. There has been significant progress made in form of drugs, inhibitors and monoclonal antibodies against altered growth factor to treat the malignant form of cancer. Moreover, these altered growth factors in prostate cancer increases steroidal hormone levels, which promotes progression. Though this review we are highlighting the majorly involved growth factors in prostate carcinogenesis, this will enable to better design the therapeutic strategies to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ilaha Isali
- Department of Urology, Case Western Reserve University, Cleveland, OH
| | | | - Arshna Qureshi
- Department of Anesthesiology, Case Western Reserve University, Cleveland, OH
| | - Ahmad O. Khalifa
- Department of Urology, Case Western Reserve University, Cleveland, OH
- Department of Urology, Menofia University, Shebin Al kom, Egypt
| | | | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
14
|
Shi C, Chen X, Tan D. Development of patient-derived xenograft models of prostate cancer for maintaining tumor heterogeneity. Transl Androl Urol 2019; 8:519-528. [PMID: 31807428 DOI: 10.21037/tau.2019.08.31] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Prostate cancer (Pca) is a heterogeneous disease with multiple morphological patterns. Thus, the establishment of a patient-derived xenograft (PDX) model that retains key features of the primary tumor is of great significance. This review demonstrates the characteristics and advantages of the Pca PDX model and summarizes the main factors affecting the establishment of the model. Because this model well recapitulates the diverse heterogeneity observed in the clinic, it was extensively utilized to discover new therapeutic targets, screen drugs, and explore metastatic mechanisms. In the future, clinical phenotype and different stages of the Pca patient might be faithfully reflected by PDX model, which provides tremendous potential for understanding Pca biology and achieving individualized treatment.
Collapse
Affiliation(s)
- Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Xue Chen
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China.,School of Basic Medical Sciences, the Chengdu Medical University, Xindu 610500, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
15
|
El Hassan R, Galante A, Kavran M, Ganocy S, Khalifa AO, Hijaz A. The vaginal distention model in mice is not a reliable model of simulated birth trauma-induced stress urinary incontinence. Neurourol Urodyn 2018; 38:599-606. [PMID: 30549310 DOI: 10.1002/nau.23886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 11/10/2022]
Abstract
AIMS Vaginal distention (VD) is a validated model of birth-related trauma in rats. Recently a mouse VD model was reported. Our study was originally conducted to evaluate the impact of age on VD in mice. This manuscript describes the study and reports on the lack of reproducibility of VD models in mice. METHODS We utilized female C57BL/6 mice. A total of 190, 12-weeks old mice, were randomized into VD and sham groups. We inflated a modified Foley's balloon with 0.3 mL for 1 h inside the mice vagina. Afterwards, we measured the leak point pressure (LPP) at defined timepoints (0, 4, 10, 20, or 40 days). We randomized another 190, 40-week old, C57BL/6 mice into either VD or sham groups. We used an extra 20 mice as age - matched controls. RESULTS In both 12 and 40 weeks-old mice, LPP was significantly decreased versus the negative controls at day 0. Additionally, in both 12 and 40 weeks-old mice, the decrease in LPP was significantly higher in the VD group compared to the sham group at day 0. However, the LPP results were comparable between VD and sham at any other time point thereafter. Furthermore, there was no significant change in LPP values between instrumented (VD and sham) mice and control mice at any time after day 0. CONCLUSIONS The VD models previously described is not a reproducible model for the study of VD with large number of mice. Our results, unfortunately, do not support its use to study VD injury in mice.
Collapse
Affiliation(s)
- Ramzi El Hassan
- Department of Urology, University of Rochester Medical Center, Rochester, New York
| | - Alex Galante
- Department of Urology, University of Florida, Gainesville, Florida
| | - Michael Kavran
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio
| | - Stephen Ganocy
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Case Western Reserve University,, Cleveland, Ohio
| | - Ahmad O Khalifa
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio.,Department of Urology, Menoufia University, Shebin Al Kom, Egypt
| | - Adonis Hijaz
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
16
|
Oak C, Khalifa AO, Isali I, Bhaskaran N, Walker E, Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol 2018; 53:835-843. [PMID: 29767250 PMCID: PMC6017185 DOI: 10.3892/ijo.2018.4407] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diosmetin, a plant flavonoid, has been shown to exert promising effects on prostate cancer cells as an anti‑proliferative and anticancer agent. In this study, using western blot analysis for protein expression and flow cytometry for cell cycle analysis, we determined that the treatment of the LNCaP and PC‑3 prostate cancer cells with diosmetin resulted in a marked decrease in cyclin D1, Cdk2 and Cdk4 expression levels (these proteins remain active in the G0‑G1 phases of the cell cycle). These changes were accompanied by a decrease in c-Myc and Bcl-2 expression, and by an increase in Bax, p27Kip1 and FOXO3a protein expression, which suggests the potential modulatory effects of diosmetin on protein transcription. The treatment of prostate cancer cells with diosmetin set in motion an apoptotic machinery by inhibiting X-linked inhibitor of apoptosis (XIAP) and increasing cleaved PARP and cleaved caspase-3 expression levels. On the whole, the findings of this study provide an in-depth analysis of the molecular mechanisms responsible for the regulatory effects of diosmetin on key molecules that perturb the cell cycle to inhibit cell growth, and suggest that diosmetin may prove to be an effective anticancer agent for use in the treatment of prostate cancer in the future.
Collapse
Affiliation(s)
- Christine Oak
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ahmad O Khalifa
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ilaha Isali
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Natarajan Bhaskaran
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Sanjeev Shukla
- Department of Urology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|