1
|
Effect of water temperature on the duration of the internesting interval across sea turtle species. J Therm Biol 2022; 110:103342. [DOI: 10.1016/j.jtherbio.2022.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
|
2
|
Robinson NJ, García-Párraga D, Stacy BA, Costidis AM, Blanco GS, Clyde-Brockway CE, Haas HL, Harms CA, Patel SH, Stacy NI, Fahlman A. A Baseline Model For Estimating the Risk of Gas Embolism in Sea Turtles During Routine Dives. Front Physiol 2021; 12:678555. [PMID: 34539425 PMCID: PMC8440993 DOI: 10.3389/fphys.2021.678555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sea turtles, like other air-breathing diving vertebrates, commonly experience significant gas embolism (GE) when incidentally caught at depth in fishing gear and brought to the surface. To better understand why sea turtles develop GE, we built a mathematical model to estimate partial pressures of N2 (PN2), O2 (PO2), and CO2 (PCO2) in the major body-compartments of diving loggerheads (Caretta caretta), leatherbacks (Dermochelys coriacea), and green turtles (Chelonia mydas). This model was adapted from a published model for estimating gas dynamics in marine mammals and penguins. To parameterize the sea turtle model, we used values gleaned from previously published literature and 22 necropsies. Next, we applied this model to data collected from free-roaming individuals of the three study species. Finally, we varied body-condition and cardiac output within the model to see how these factors affected the risk of GE. Our model suggests that cardiac output likely plays a significant role in the modulation of GE, especially in the deeper diving leatherback turtles. This baseline model also indicates that even during routine diving behavior, sea turtles are at high risk of GE. This likely means that turtles have additional behavioral, anatomical, and/or physiologic adaptions that serve to reduce the probability of GE but were not incorporated in this model. Identifying these adaptations and incorporating them into future iterations of this model will further reveal the factors driving GE in sea turtles.
Collapse
Affiliation(s)
- Nathan J. Robinson
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Daniel García-Párraga
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | - Brian A. Stacy
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources, University of Florida (duty station), Washington, DC, United States
| | | | - Gabriela S. Blanco
- Instituto de Biología de Organismos Marinos (IBIOMAR-CCT CONICET-CENPAT), Puerto Madryn, Argentina
| | | | - Heather L. Haas
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Woods Hole, MA, United States
| | - Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, North Carolina State University, Raleigh, NC, United States
| | - Samir H. Patel
- Coonamessett Farm Foundation, East Falmouth, MA, United States
| | - Nicole I. Stacy
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Andreas Fahlman
- Department of Research, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Global Diving Research, Inc., Ottawa, ON, Canada
| |
Collapse
|