1
|
Bugno-Poniewierska M, Jankowska M, Raudsepp T, Kowalska K, Pawlina-Tyszko K, Szmatola T. Molecular cytogenetic screening of sex chromosome abnormalities in young horse populations. Equine Vet J 2024; 56:786-795. [PMID: 38785417 DOI: 10.1111/evj.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Chromosomal abnormalities occur in the equine population at a rate of approximately 2%. The use of molecular cytogenetic techniques allows a more accurate identification of chromosomal abnormalities, especially those with a low rate of abnormal metaphases, demonstrating that the actual incidence in equine populations is higher. OBJECTIVES Estimation of the number of carriers of karyotypic abnormalities in a sample from a population of young horses of various breeds, using molecular cytogenetic techniques. STUDY DESIGN Cross-sectional. METHODS Venous blood samples were collected from 500 young horses representing 5 breeds (Purebred Arabian, Hucul, Polish primitive horse [Konik], Małopolska, Coldblood, Silesian). Chromosomes and DNA were obtained from blood lymphocytes and evaluated by fluorescence in situ hybridisation (FISH) and PCR, using probes and markers for the sex chromosomes and select autosomes. RESULTS Nineteen horses, 18 mares and 1 stallion, were diagnosed with different chromosomal abnormalities: 17 cases of mosaic forms of sex chromosome aneuploidies with a very low incidence (0.6%-4.7%), one case of a SRY-negative 64,XY sex reversal mare, and one mare with X-autosome translocation. The percentage of sex chromosomal aberrations was established as 3.8% in the whole population, 6.08% in females and 0.49% in males. MAIN LIMITATIONS Limited sample size, confined to horses from Poland. CONCLUSIONS The rate of sex chromosomal abnormalities we identified was almost double that reported in previous population studies that used classical chromosome staining techniques. FISH allowed the detection of aneuploid cell lines which had a very low incidence. The FISH technique is a faster and more precise method for karyotype examination; however, it is usually focused on only one or two chromosomes while banding karyotyping includes the entire chromosome set.
Collapse
Affiliation(s)
- Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Krakow, Poland
| | - Magdalena Jankowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Katarzyna Kowalska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
| | - Tomasz Szmatola
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland
- Centre of Experimental and Innovative Medicine, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
2
|
Cieslak J, Mackowski M, Skrzetuska W, Fidos-Tama E, Siwinska N, Szczerbal I. A case of non-mosaic X trisomy (65,XXX) in a Thoroughbred mare confirmed by cytogenetic and molecular analysis. J Appl Genet 2024; 65:395-398. [PMID: 38368284 DOI: 10.1007/s13353-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
A 9-year-old Thoroughbred mare with normal external genitalia and regular oestrus symptoms was gynecologically examined prior to insemination. This primary examination revealed the presence of a hypoplastic uterus and the lack of normal ovaries, and the mare was therefore subjected to more detailed diagnostics, including endocrinological, genetic, and clinical tests. Diagnostic imaging with the use of ultrasonography and endoscopy confirmed the underdevelopment of internal genitalia. Analysis of circulating sex hormones revealed very low concentrations of progesterone and oestradiol. Finally, cytogenetic analysis showed the presence of non-mosaic X trisomy (65,XXX), an aneuploidy of sex chromosomes that is rarely detected in horses. This finding was also confirmed by molecular methods, including highly sensitive droplet digital PCR (ddPCR) and microsatellite markers genotyping. Our study reveals the need for gynaecological and genetic evaluation of broodmares, even if their phenotype (including developed external genitalia and oestrus symptoms) shows no signs of potential abnormalities.
Collapse
Affiliation(s)
- Jakub Cieslak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Mariusz Mackowski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Weronika Skrzetuska
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | | | - Natalia Siwinska
- Department of Internal Medicine and Clinic of Diseases of Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| |
Collapse
|
3
|
Kowal W, Kij-Mitka B, Bednarek K, Cernohorska H, Kubickova S, Bugno-Poniewierska M. Cytogenetic Diagnosis of a British Shorthair Tomcat with a 37, X/38, XY/39, XY+der(Y) Karyotype. Folia Biol (Praha) 2022. [DOI: 10.3409/fb_70-4.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study, the determination of three different cell lines in a two-year-old British shorthair tomcat, using fluorescence in situ hybridisation (FISH), is described. The FISH technique was instrumental in the identification of this chromosomal aberration, which had not been
previously described in cats. The mosaic karyotype with three cell lines (37, X; 38, XY; and 39, XY+der(Y)), detected using X-, Yand autosomal B1-whole chromosome painting probes, were all visible in the metaphase and interphase nuclei. The ratios of the three cell lines were 3.6%, 85.6% and
10.8%, respectively. In addition, at the time of this examination, the cat had a temperamental disposition that had persisted beyond castration.
Collapse
Affiliation(s)
- Wiktoria Kowal
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Barbara Kij-Mitka
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Kamila Bednarek
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture, Mickiewicza 24/28, 30-059, Kraków, Poland
| | - Halina Cernohorska
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Svatava Kubickova
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture, Mickiewicza 24/28, 30-059, Kraków, Poland
| |
Collapse
|
4
|
Segmental Cervical Aplasia in a Colombian Creole Mare with Mosaic X-Chromosome Aneuploidy. J Equine Vet Sci 2021; 105:103720. [PMID: 34607685 DOI: 10.1016/j.jevs.2021.103720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
A 4-year-old Colombian Creole mare was presented for diagnosis because the external orifice of her cervix was not detectable when a uterine lavage as therapy for uterine fluid accumulation was attempted. Clinical and ultrasonographic evaluation of the genital tract revealed that ovaries were of normal size and showed structures suggestive of regular ovarian activity. However, granular free-floating fluid material distending the uterus was detected by ultrasound. Upon vaginal examination, the normal external cervical morphology was not evident. The vagina ended in a blind bag with a small papilla with no evident external cervical os. Cytology of uterine fluid obtained by transvaginal aspiration showed findings compatible with mucometra. Cytogenetic analysis revealed an abnormal karyotype (63,X and 64,XX both 45% and 65,XXX 10%). A diagnosis of congenital segmental cervical aplasia was proposed possibly related to the mosaicism detected. To our knowledge, this is the first case of this reproductive pathology in a mare with regular ovarian activity and confirmed aneuploidy in mosaic form of the X sex chromosome.
Collapse
|
5
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
6
|
Abstract
Reproductive disorders are genetically heterogeneous and complex; available genetic tests are limited to chromosome analysis and 1 susceptibility gene. Cytogenetic analysis should be the first test to confirm or rule out chromosomal aberrations. No causative genes/mutations are known. The only available genetic test for stallion subfertility is based on a susceptibility gene FKBP6. The ongoing progress in equine genomics will improve the status of genetic testing. However, because subfertile phenotypes do not facilitate collection of large numbers of samples or pedigrees, and clinical causes of many cases remain unknown, further progress requires constructive cross-talk between geneticists, clinicians, breeders, and owners.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Molecular Cytogenetics Laboratory, Texas A&M University, College of Veterinary Medicine and Biomedical Sciences, Veterinary Research Building Room 306, 588 Raymond Stotzer Parkway, College Station, TX 77843-4458, USA.
| |
Collapse
|
7
|
Neuhauser S, Handler J, Schelling C, Pieńkowska-Schelling A. Fertility and 63,X Mosaicism in a Haflinger Sibship. J Equine Vet Sci 2019; 78:127-133. [PMID: 31203976 DOI: 10.1016/j.jevs.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 10/26/2022]
Abstract
Chromosomal abnormalities are notable causes of infertility in horses. Mares show various degrees of estrous behavior, and ultrasound examination often reveals an underdeveloped genital tract. This article reports investigations on fertility in a Haflinger sibship with a healthy, normally developed, fertile mare with at least three healthy offspring. Chromosomal analysis performed incidentally and blinded for this mare revealed 63,X/64,XX/65,XXX mosaicism. Two closely related mares were also mosaics (63,X/64,XX), and one of them was a carrier of a marker chromosome. Repeated examinations of the mare and seven relatives (four mares and three stallions) did not provide evidence for sub- or in-fertility. They had no developmental abnormalities or conspicuous body conditions. Peripheral blood samples were collected for analysis of the karyotype and molecular analyses. Chromosomes were Giemsa stained and 4',6-diamidino-2-phenylindole banded to identify numerical or structural aberrations of chromosomes and identification of sex chromosomes, respectively. Fluorescence in situ hybridization was performed with an equine Y-chromosome painting probe to identify and count the sex chromosomes, and polymerase chain reaction analysis was used to test for the presence of the SRY gene and investigating chimerism. The present article demonstrates the necessity of further studies analyzing chromosomal X0 mosaics to improve the predictive value of chromosomal aberrations on fertility.
Collapse
Affiliation(s)
| | - Johannes Handler
- Pferdezentrum Bad Saarow, Freie Universität Berlin, Bad Saarow, Germany.
| | - Claude Schelling
- Klinik für Reproduktionsmedizin und Zentrum für Klinische Studien, Vetsuisse Fakultät Zürich, Universität Zürich, Lindau, Switzerland
| | - Aldona Pieńkowska-Schelling
- Klinik für Reproduktionsmedizin und Zentrum für Klinische Studien, Vetsuisse Fakultät Zürich, Universität Zürich, Lindau, Switzerland; Institut für Genetik, Vetsuisse Fakultät Bern, Universität Bern, Bern, Switzerland
| |
Collapse
|
8
|
Raudsepp T, Das PJ, Avila F, Chowdhary BP. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 2011; 6:72-83. [PMID: 21876343 DOI: 10.1159/000330627] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The pseudoautosomal region (PAR) is a unique and specialized segment on the mammalian sex chromosomes with known functions in male meiosis and fertility. Detailed molecular studies of the region in human and mouse show dramatic differences between the 2 PARs. Recent mapping efforts in horse, dog/cat, cattle/ruminants, pig and alpaca indicate that the PAR also varies in size and gene content between other species. Given that PAR genes escape X inactivation, these differences might critically affect the genetic consequences, such as embryonic survival and postnatal phenotypes of sex chromosome aneuploidies. The aim of this review is to combine the available information about the organization of the PAR in domestic species with the cytogenetic data on sex chromosome aneuploidies. We show that viable XO individuals are relatively frequently found in species with small PARs, such as horses, humans and mice but are rare or absent in species in which the PAR is substantially larger, like in cattle/ruminants, dogs, pigs, and alpacas. No similar correlation can be detected between the PAR size and the X chromosome trisomy in different species. Recent evidence about the likely involvement of PAR genes in placenta formation, early embryonic development and genomic imprinting are presented.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | |
Collapse
|
9
|
Trisomy-X with estrous cycle anomalies in two female dogs. Theriogenology 2011; 76:374-80. [PMID: 21550105 DOI: 10.1016/j.theriogenology.2011.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 11/21/2022]
Abstract
Two female dogs were presented with a history of abnormal estrous cycles and infertility, despite multiple breedings. Medical therapy to correct the cycle anomalies did not result in pregnancy. Cytogenetic analysis of blood lymphocyte cultures in each dog revealed three copies of the X chromosome in each cell, constituting a 79,XXX karyotype (trisomy-X). Both dogs were eventually ovariohysterectomised and histological evaluation revealed hypoplastic ovaries and an absence of normal follicular structures. However, partial or immature follicles were noted, which may have been sufficient to cause both females to initiate cycling. The history and clinical characteristics found in these dogs were compared to those described in three other dogs reported with trisomy-X, as well as those reported in other species. These findings highlighted the importance of cytogenetic studies in fertility evaluation and achieving a definitive diagnosis for infertility in the bitch.
Collapse
|
10
|
|
11
|
Bugno M, Słota E, Pieńkowska-schelling A, Schelling C. Identification of chromosome abnormalities in the horse using a panel of chromosome-specific painting probes generated by microdissection. Acta Vet Hung 2009; 57:369-81. [PMID: 19635709 DOI: 10.1556/avet.57.2009.3.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fluorescent in situ hybridisation (FISH) using a panel of molecular probes for all chromosome pairs obtained by chromosome microdissection of the domestic horse ( Equus caballus ) was used to diagnose karyotype abnormalities in 35 horses (32 mares, 2 stallions and 1 intersex), which were selected for the study due to infertility (23 horses), reduced fertility (10 horses) and developmental anomalies (2 horses). The use of the FISH technique with probes for each horse chromosome pair enabled the diagnosis of many different chromosome aberrations in this population. Among the horses analysed, 21 animals had normal karyotype - 64,XX (19 mares) and 64,XY (2 stallions). Fourteen animals, constituting 40% of the population studied, showed the following chromosome abnormalities: 63,X (1 mare); 63,X/64,XX (6 mares); 63,X/64,XX/65,XXX (3 mares); 63,X/65,XXX (1 mare); 64,XX/65,XX+Xp (1 mare); 63,X/64,XX/65,XX+Xq (1 mare), and 63,X/64,XX/65,XX+delY (1 intersex). When only the mares studied because of complete infertility were taken into consideration, this proportion exceeded 56%. Due to the increased frequency of the above-mentioned aberrations in the mosaic form of two or more lines, it was necessary to analyse a large number (100-300) of metaphase spreads. The use of specific molecular probes obtained by chromosome microdissection made these diagnoses much easier.
Collapse
Affiliation(s)
- Monika Bugno
- 1 National Research Institute of Animal Production Department of Immuno- and Cytogenetics Krakowska 1 32-083 Balice/Kraków Poland
| | - Ewa Słota
- 1 National Research Institute of Animal Production Department of Immuno- and Cytogenetics Krakowska 1 32-083 Balice/Kraków Poland
| | | | - Claude Schelling
- 3 Vetsuisse Faculty University of Zurich Department of Veterinary Medicine Zurich Switzerland
| |
Collapse
|
12
|
Ducos A, Revay T, Kovacs A, Hidas A, Pinton A, Bonnet-Garnier A, Molteni L, Slota E, Switonski M, Arruga MV, van Haeringen WA, Nicolae I, Chaves R, Guedes-Pinto H, Andersson M, Iannuzzi L. Cytogenetic screening of livestock populations in Europe: an overview. Cytogenet Genome Res 2008; 120:26-41. [PMID: 18467823 DOI: 10.1159/000118738] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2007] [Indexed: 11/19/2022] Open
Abstract
Clinical animal cytogenetics development began in the 1960's, almost at the same time as human cytogenetics. However, the development of the two disciplines has been very different during the last four decades. Clinical animal cytogenetics reached its 'Golden Age' at the end of the 1980's. The majority of the laboratories, as well as the main screening programs in farm animal species, presented in this review, were implemented during that period, under the guidance of some historical leaders, the first of whom was Ingemar Gustavsson. Over the past 40 years, hundreds of scientific publications reporting original chromosomal abnormalities generally associated with clinical disorders (mainly fertility impairment) have been published. Since the 1980's, the number of scientists involved in clinical animal cytogenetics has drastically decreased for different reasons and the activities in that field are now concentrated in only a few laboratories (10 to 15, mainly in Europe), some of which have become highly specialized. Currently between 8,000 and 10,000 chromosomal analyses are carried out each year worldwide, mainly in cattle, pigs, and horses. About half of these analyses are performed in one French laboratory. Accurate estimates of the prevalence of chromosomal abnormalities in some populations are now available. For instance, one phenotypically normal pig in 200 controlled in France carries a structural chromosomal rearrangement. The frequency of the widespread 1;29 Robertsonian translocation in cattle has greatly decreased in most countries, but remains rather high in certain breeds (up to 20-25% in large beef cattle populations, even higher in some local breeds). The continuation, and in some instances the development of the chromosomal screening programs in farm animal populations allowed the implementation of new and original scientific projects, aimed at exploring some basic questions in the fields of chromosome and/or cell biology, thanks to easier access to interesting biological materials (germ cells, gametes, embryos ...).
Collapse
Affiliation(s)
- A Ducos
- INRA-ENVT, UMR 444 Génétique Cellulaire, Toulouse, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bugno M, Słota E. Application of arm-specific painting probes of horse X chromosome for karyotype analysis in an infertile Hutsul mare with 64,XX/65,XX+Xp karyotype: case report. Acta Vet Hung 2007; 55:309-14. [PMID: 17867458 DOI: 10.1556/avet.55.2007.3.5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A 5-year-old infertile Hutsul mare was subjected to cytogenetic analysis. Fluorescence in situ hybridisation (FISH) using the equine Xp and Xq chromosome painting probes was carried out on chromosome preparations obtained after blood lymphocyte culture. These probes were generated by chromosome microdissection and a large number of spreads was analysed (525). The karyotype formula of the analysed mare was 64,XX/65,XX+Xp with the ratio of the two lines being 99.4 and 0.6, respectively. The goal of the study was to apply chromosome microdissection and the FISH technique for cytogenetic diagnostics.
Collapse
Affiliation(s)
- Monika Bugno
- Department of Immuno- and Cytogenetics, National Research Institute of Animal Production, 32-083 Balice, Krakowska 1, Poland.
| | | |
Collapse
|
14
|
Bugno M, Słota E, Pieńkowska-Schelling A, Schelling C. Detection of equine X chromosome mosaicism in a mare using an equine X whole chromosome painting probe (WCPP)--a case report. Acta Vet Hung 2007; 55:207-12. [PMID: 17555285 DOI: 10.1556/avet.55.2007.2.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An infertile mare with hypoplastic ovaries was subjected to cytogenetic analysis. Fluorescence in situ hybridisation (FISH) using the equine X whole chromosome painting probe (WCPP) was carried out on a chromosome preparation obtained from blood lymphocyte culture. The number of analysed spreads was high (235) and in the X chromosome aneuploidy in mosaic form was diagnosed. The karyotype formula was 63,X / 64,XX / 65,XXX. The ratio of the three lines was 15%, 82% and 3%, respectively. The application of the FISH technique with WCPP is discussed.
Collapse
Affiliation(s)
- Monika Bugno
- Department of Immuno- and Cytogenetics, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice/Kraków, Poland.
| | | | | | | |
Collapse
|