1
|
Munk P, Yang D, Röder T, Maier L, Petersen TN, Duarte ASR, Clausen PTLC, Brinch C, Van Gompel L, Luiken R, Wagenaar JA, Schmitt H, Heederik DJJ, Mevius DJ, Smit LAM, Bossers A, Aarestrup FM. The European livestock resistome. mSystems 2024; 9:e0132823. [PMID: 38501800 PMCID: PMC11019871 DOI: 10.1128/msystems.01328-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors.
Collapse
Affiliation(s)
- Patrick Munk
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Dongsheng Yang
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Timo Röder
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Leonie Maier
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
| | | | | | | | - Christian Brinch
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Liese Van Gompel
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Roosmarijn Luiken
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Heike Schmitt
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dick J. J. Heederik
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - Dik J. Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lidwien A. M. Smit
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
| | - EFFORT ConsortiumGravelandHaitskeGonzalez-ZornBrunoMoyanoGabrielSandersPascalChauvinClaireBattistiAntonioDewulfJeroenWadepohlKatharinaWasylDariuszSkarzyńskaMagdalenaZajacMagdalenaPękala-SafińskaAgnieszkaDaskalovHristoStärkKatharina D. C.
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh, United Kingdom
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Alex Bossers
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, The Netherlands, Utrecht
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
2
|
Bogri A, Jensen EEB, Borchert AV, Brinch C, Otani S, Aarestrup FM. Transmission of antimicrobial resistance in the gut microbiome of gregarious cockroaches: the importance of interaction between antibiotic exposed and non-exposed populations. mSystems 2024; 9:e0101823. [PMID: 38095429 PMCID: PMC10805027 DOI: 10.1128/msystems.01018-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global health concern, further complicated by its spread via the microbiome bacterial members. While mathematical models discuss AMR transmission through the symbiotic microbiome, experimental studies are scarce. Herein, we used a gregarious cockroach, Pycnoscelus surinamensis, as an in vivo animal model for AMR transmission investigations. We explored whether the effect of antimicrobial treatment is detectable with metagenomic sequencing, and whether AMR genes can be spread and established in unchallenged (not treated with antibiotics) individuals following contact with treated donors, and under various frequencies of interaction. Gut and soil substrate microbiomes were investigated by metagenomic sequencing for bacterial community composition and resistome profiling. We found that tetracycline treatment altered the treated gut microbiome by decreasing bacterial diversity and increasing the abundance of tetracycline resistance genes. Untreated cockroaches that interacted with treated donors also had elevated tetracycline resistance. The levels of resistance differed depending on the magnitude and frequency of donor transfer. Additionally, treated donors showed signs of microbiome recovery due to their interaction with the untreated ones. Similar patterns were also recorded in the soil substrate microbiomes. Our results shed light on how interacting microbiomes facilitate AMR gene transmission to previously unchallenged hosts, a dynamic influenced by the interaction frequencies, using an in vivo model to validate theoretical AMR transmission models.IMPORTANCEAntimicrobial resistance is a rising threat to human and animal health. The spread of resistance through the transmission of the symbiotic gut microbiome is of concern and has been explored in theoretical modeling studies. In this study, we employ gregarious insect populations to examine the emergence and transmission of antimicrobial resistance in vivo and validate modeling hypotheses. We find that antimicrobial treatment increases the levels of resistance in treated populations. Most importantly, we show that resistance increased in untreated populations after interacting with the treated ones. The level of resistance transmission was affected by the magnitude and frequency of population mixing. Our results highlight the importance of microbial transmission in the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Amalia Bogri
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | | | - Asbjørn Vedel Borchert
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Saria Otani
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kgs., Lyngby, Denmark
| |
Collapse
|
3
|
Apenteng OO, Aarestrup FM, Vigre H. Modelling the effectiveness of surveillance based on metagenomics in detecting, monitoring, and forecasting antimicrobial resistance in livestock production under economic constraints. Sci Rep 2023; 13:20410. [PMID: 37990114 PMCID: PMC10663573 DOI: 10.1038/s41598-023-47754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Current surveillance of antimicrobial resistance (AMR) is mostly based on testing indicator bacteria using minimum inhibitory concentration (MIC) panels. Metagenomics has the potential to identify all known antimicrobial resistant genes (ARGs) in complex samples and thereby detect changes in the occurrence earlier. Here, we simulate the results of an AMR surveillance program based on metagenomics in the Danish pig population. We modelled both an increase in the occurrence of ARGs and an introduction of a new ARG in a few farms and the subsequent spread to the entire population. To make the simulation realistic, the total cost of the surveillance was constrained, and the sampling schedule was set at one pool per month with 5, 20, 50, or 100 samples. Our simulations demonstrate that a pool of 20-50 samples and a sequencing depth of 250 million fragments resulted in the shortest time to detection in both scenarios, with a time delay to detection of change of [Formula: see text]15 months in all scenarios. Compared with culture-based surveillance, our simulation indicates that there are neither significant reductions nor increases in time to detect a change using metagenomics. The benefit of metagenomics is that it is possible to monitor all known resistance in one sampling and laboratory procedure in contrast to the current monitoring that is based on the phenotypic characterisation of selected indicator bacterial species. Therefore, overall changes in AMR in a population will be detected earlier using metagenomics due to the fact that the resistance gene does not have to be transferred to and expressed by an indicator bacteria before it is possible to detect.
Collapse
Affiliation(s)
- Ofosuhene O Apenteng
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
- Section of Animal Welfare and Disease Control, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Håkan Vigre
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
5
|
Jensen EEB, Sedor V, Eshun E, Njage P, Otani S, Aarestrup FM. The resistomes of rural and urban pigs and poultry in Ghana. mSystems 2023; 8:e0062923. [PMID: 37737585 PMCID: PMC10654090 DOI: 10.1128/msystems.00629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE To the best of our knowledge, this is the first report on the resistomes that are measured using metagenomics in livestock from Sub-Saharan Africa. We find notable differences in the microbiomes between both pigs and poultry, and those also varied markedly compared to similar samples from Europe. However, for both animal species, the same bacterial taxa drove such differences. In pigs and urban free-range poultry, we find a very low abundance of antimicrobial resistance genes (ARGs), whereas rural free-range poultry displayed similarity to the European average, and industrialized poultry exhibited higher levels. These findings show how different African livestock bacterial communities and resistomes are from their European counterparts. They also underscore the importance of continued surveillance and investigation into antimicrobial resistance across diverse ecosystems, contributing significantly to global efforts toward combating the threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Victoria Sedor
- Veterinary Services Department, Ministry of Food and Agriculture, National Food Safety Laboratory, Accra, Ghana
| | - Emmanuel Eshun
- Veterinary Services Department, Ministry of Food and Agriculture, National Food Safety Laboratory, Accra, Ghana
| | - Patrick Njage
- Technical University of Denmark, Kemitorvet, Denmark
| | - Saria Otani
- Technical University of Denmark, Kemitorvet, Denmark
| | | |
Collapse
|