1
|
Zhang Y, Zhao H, Qi Y, Li M, Yang N, Guo J, Xian X, Liu W. Global Potential Geographical Distribution of the Southern Armyworm ( Spodoptera eridania) under Climate Change. BIOLOGY 2023; 12:1040. [PMID: 37508469 PMCID: PMC10376329 DOI: 10.3390/biology12071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
The southern armyworm (Spodoptera eridania), a polyphagous crop pest native to tropical America, has been found in Africa (2016) and India (2019), causing defoliation and damage to the reproductive structures of cassava, soybean, and tomato. The damage caused by this pest to crop systems has raised concerns regarding its potential risks. Therefore, we predicted the potential geographical distribution of S. eridania under climate change conditions using 19 bioclimatic variables based on an optimized MaxEnt model. The results showed that annual precipitation (bio12), mean temperature of the warmest quarter (bio10), and precipitation of the driest month (bio14) were important bioclimatic variables influencing the potential distribution. The prediction showed that the suitable habitat area was approximately 3426.43 × 104 km2, mainly concentrated in southern North America, South America, western Europe, central Africa, southern Asia, and eastern Oceania. In response to global climate change, suitable habitats for S. eridania will expand and shift to higher latitudes in the future, especially under the SSP5-8.5 scenario. Because of the current devastating effects on crop production, countries without S. eridania invasion, such as the European Union, Southeast Asian countries, and Australia, need to strengthen phytosanitary measures at border ports to prevent the introduction of this pest.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxiang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhan Qi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ming Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Xian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Kenis M, Agboyi LK, Adu-Acheampong R, Ansong M, Arthur S, Attipoe PT, Baba ASM, Beseh P, Clottey VA, Combey R, Dzomeku I, Eddy-Doh MA, Fening KO, Frimpong-Anin K, Hevi W, Lekete-Lawson E, Nboyine JA, Ohene-Mensah G, Oppong-Mensah B, Nuamah HSA, van der Puije G, Mulema J. Horizon scanning for prioritising invasive alien species with potential to threaten agriculture and biodiversity in Ghana. NEOBIOTA 2022. [DOI: 10.3897/neobiota.71.72577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive alien species (IAS) continue to shape the global landscape through their effects on biological diversity and agricultural productivity. The effects are particularly pronounced in Sub-Saharan Africa, which has seen the arrival of many IAS in recent years. This has been attributed to porous borders, weak cross border biosecurity, and inadequate capacity to limit or stop invasions. Prediction and early detection of IAS, as well as mechanisms of containment and eradication, are needed in the fight against this global threat. Horizon scanning is an approach that enables gathering of information on risk and impact that can support IAS management. A study was conducted in Ghana to establish two ranked lists of potential invasive alien plant pest species that could be harmful to agriculture, forestry, and the environment, and to rank them according to their potential threat. The ultimate objective was to enable prioritization of actions including pest risk analysis, prevention, surveillance and contingency plans. Prioritisation was carried out using an adapted version of horizon scanning and consensus methods developed for ranking IAS worldwide. Following a horizon scan of invasive alien species not yet officially present in Ghana, a total of 110 arthropod and 64 pathogenic species were assessed through a simplified pest risk assessment. Sixteen species, of which 14 were arthropods and two pathogens, had not been recorded on the African continent at the time of assessment. The species recorded in Africa included 19 arthropod and 46 pathogenic species which were already recorded in the neighbouring countries of Burkina Faso, Côte d’Ivoire, and Togo. The majority of arthropod species were likely to arrive as contaminants on commodities, followed by a sizable number which were likely to arrive as stowaways, while some species were capable of long distance dispersal unaided. The main actions suggested for species that scored highly included full pest risk analyses and, for species recorded in neighbouring countries, surveys to determine their presence in Ghana were recommended.
Collapse
|
3
|
Tepa‐Yotto GT, Gouwakinnou GN, Fagbohoun JR, Tamò M, Sæthre M. Horizon scanning to assess the bioclimatic potential for the alien species Spodoptera eridania and its parasitoids after pest detection in West and Central Africa. PEST MANAGEMENT SCIENCE 2021; 77:4437-4446. [PMID: 33991052 PMCID: PMC8453867 DOI: 10.1002/ps.6478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 05/14/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The southern armyworm (SAW) Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) is native to the tropical Americas where the pest can feed on more than 100 plant species. SAW was recently detected in West and Central Africa, feeding on various crops including cassava, cotton, amaranth and tomato. The current work was carried out to predict the potential spatial distribution of SAW and four of its co-evolved parasitoids at a global scale using the maximum entropy (Maxent) algorithm. RESULTS SAW may not be a huge problem outside its native range (the Americas) for the time being, but may compromise crop yields in specific hotspots in coming years. The analysis of its potential distribution anticipates that the pest might easily migrate east and south from Cameroon and Gabon. CONCLUSION The models used generally demonstrate that all the parasitoids considered are good candidates for the biological control of SAW globally, except they will not be able to establish in specific climates. The current paper discusses the potential role of biological control using parasitoids as a crucial component of a durable climate-smart integrated management of SAW to support decision making in Africa and in other regions of bioclimatic suitability. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ghislain T Tepa‐Yotto
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
- Ecole de Gestion et de Production Végétale et SemencièreUniversité Nationale d'AgricultureKétouBenin
| | - Gérard N Gouwakinnou
- Laboratoire d'Ecologie, de Botanique et de Biologie végétaleFaculté d'Agronomie, Université de ParakouParakouBenin
| | - Johannes R Fagbohoun
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
- Faculty of BiosciencesNorwegian University of Life SciencesÅsNorway
- Department for Invertebrate Pests and Weeds in Forestry, Horticulture and AgricultureNorwegian Institute of Bioeconomy ResearchÅsNorway
| | - Manuele Tamò
- Biorisk Management FacilityInternational Institute of Tropical AgricultureCotonouBenin
| | - May‐Guri Sæthre
- Department for Climate, Energy and Environment, Section for Environment and Food SecurityNorwegian Agency for Development and CooperationOsloNorway
| |
Collapse
|